- 博客(89)
- 收藏
- 关注
原创 PyQt6控件-QRadioButton
当单选按钮的选中状态发生变化时发出的信号。可以连接这个信号到槽函数,以在状态变化时执行特定的操作。,则在同一父部件下的单选按钮会形成一个排他的组,即一次只能选择一个。在这个例子中,我们创建了三个单选按钮,并将它们添加到垂直布局中。槽函数会在单选按钮状态发生变化时被调用,并输出当前选中的按钮的文本。获取或设置单选按钮的启用状态。然后,我们连接了单选按钮的。是 PyQt6 中用于创建单选按钮的类,它继承自。方法来程序化地触发单选按钮的点击事件。获取或设置单选按钮的文本标签。获取或设置单选按钮的选中状态。
2023-11-23 10:46:54 648
原创 C语言读入bmp图像
图像高度(4字节):以像素为单位,表示图像的高度。如果为正值,图像是正向的(从上到下),如果为负值,图像是反向的(从下到上)。对于24位真彩色的BMP图像,图像数据部分以蓝色、绿色和红色的顺序依次表示一个像素的颜色,每个颜色通道占用1字节。- 图像数据大小(4字节):以字节为单位,表示图像数据的大小。- 使用的颜色数(4字节):通常为0,表示使用所有可能的颜色。- 重要的颜色数(4字节):通常为0,表示所有颜色都是重要的。- 图像宽度(4字节):以像素为单位,表示图像的宽度。
2023-09-08 12:38:45 1557
原创 perl两个字符串拼接在一起
需要注意的是,Perl还提供了更简洁的字符串拼接方式,使用双引号字符串插值(双引号内的变量会被自动替换)。包含在双引号字符串中,Perl会自动将它们替换为相应的变量值,实现字符串的拼接。使用上述方式,你可以在Perl中拼接两个字符串,可以是变量或字符串字面量。运算符将两个字符串拼接在一起。拼接在一起,并将结果赋值给变量。语句打印输出拼接后的字符串。在Perl中,可以使用。在这个示例中,将变量。
2023-07-22 15:29:43 1924
原创 perl语言读取文件夹中所有的bmp图像
替换为实际的文件夹路径,其中包含你要读取的BMP图像文件。代码遍历文件夹中的每个文件,使用正则表达式过滤出BMP图像文件,然后可以在循环中对每个图像文件执行相应的操作。
2023-07-20 15:10:17 321
原创 Faster-rcnn 源码学习(二)
Faster-rcnn 源码学习(二)本节主要介绍分步训练中利用训练好的RPN网络生成proposal。产品proposal的网络结构如下:第二步利用训练好的rpn网络产生proposal,代码如下:## 第二步,主要是利用第一步训练好的RPN网络来生成proposal print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Stage 1 RPN, generate proposals'
2021-09-06 19:31:41 316
原创 YOLOX网络结构
YOLOX网络结构 之前写过一个YOLOX训练自己的VOC标注的数据,近期调试了一下YOLOX源码,根据代码结构及之前的网络提供的YOLOV5结构,绘制了YOLOX-S的网络结构,如下图所示:说明:1.模块上面的名字为代码中的名字。 2.模块下面的网络大小为该模型输出的模型大小。...
2021-09-02 16:09:46 3838 4
原创 Faster-rcnn 源码学习(一)
Faster-rcnn 源码学习(一)由于工作上的需要,需使用fasterrcnn,由于fasterrcnn的细节较多,因此决定看一下源码,看的过程中主要参考网上的内容,为了遗忘,做一下记录,会是一系列文章,边整理边发布。参考学习代码连接:https://github.com/rbgirshick/py-faster-rcnnFaster-RCNN利用代码实现讲解算法原理Faster-rcnn环境搭建与训练自己的数据我们跟着Faster rcnn的训练流程来一步一步梳理,进入tools\train
2021-08-25 15:09:06 789
原创 Faster-rcnn环境搭建与训练自己的数据
Faster-RCNN环境搭建与训练自己的数据0 前言之前整理过一篇关于fasterrcnn的文章,文中详细介绍了fasterrcnn原理分析,近期由于工作需要利用fasterrcnn进行模型训练,故记录如下。1.环境搭建与demo运行1).配置环境环境配置可参考:https://github.com/rbgirshick/py-faster-rcnn/blob/master/README.md,作者提供了较详细的安装步骤。(1)在进行这一步之前,需已经在自己的机器上配置好caffe环境以及各种
2021-08-25 14:55:59 6214 1
原创 YOLOX训练自己的VOC标注的数据
0. 前言YOLOX是旷世在YOLO的基础上将anchor-free技术引入,从性能和速度上取得的更好的结果。具体可参考github相关代码及论文说明,此处介绍如何利用YOLOX训练自己的VOC数据集。github:https://github.com/Megvii-BaseDetection/YOLOXpaper:https://arxiv.org/abs/2107.084301.环境配置参考github上相关说明。1)安装YOLOXconda create -n yolox
2021-07-26 11:29:23 3739 3
原创 mmdetection 训练COCO出现AttributeError ‘COCO‘ object has no attribute ‘get_cat_ids‘
mmdetection 训练COCO出现AttributeError: ‘COCO‘ object has no attribute ‘get_cat_ids‘原因mmdetection用到了pycocotools,本来接口是pycocotools.coco.getCatIds,但是mmdetection又在外包了一层,变成了get_cat_ids,而pycocotools.coco又没有这个成员函数,导致出错。解决方法方法1,参考github issue:revert the coco.py f
2020-07-16 17:42:32 2878
原创 Python 中bisect用法说明
Python 中bisect用法说明bisect是python内置模块,用于有序序列的插入和查找。查找:bisect(array, item)bisect_left(array, item)bisect_right(array, item)插入:insort(array,item)insort_left(array,item)insort_right(array,item)1.查找import bisectarr = [1,3,3,6,8,12,15]value =
2020-07-11 23:44:58 3236
原创 LabelImg的安装运行出现No module named 'libs.resources'错误
LabelImg的安装运行出现No module named 'libs.resources’错误问题描述:win7下安装anaconda后运行 python labelImg.py出现No module named 'libs.resources’错误解决方法:1.运行pyrcc5 -o resources.py resources.qrc2.将生成的resources.py拷贝到同级的...
2020-03-19 10:09:40 5106 1
原创 caffe源码分析--Blob应用
caffe源码分析–Blob应用本文主要介绍如何利用blob函数进行验证测试,加深理解,Blob代码分析可参考Caffe源码分析–Blob代码分析首先编译好caffe,新建blob_demo.cpp文件,代码如下,参考书籍《深度学习 21天实战Caffe》#include<vector>#include<iostream>#include<caffe/blo...
2020-02-25 21:49:24 215 1
原创 YOLOV3剪枝项目出现“could not find or load the Qt platform plugin xcb”
YOLOV3剪枝项目出现“could not find or load the Qt platform plugin “xcb””配置环境运行剪枝项目:https://github.com/tanluren/yolov3-channel-and-layer-pruning问题:配置好环境后运行量化剪枝项目训练OK,测试时出现: This application failed to start ...
2019-12-27 15:11:21 470
原创 python学习:np.argwhere()用法
python np.argwhere()用法np.argwhere( a )返回非0的数组元组的索引,其中a是要索引数组的条件。eg:A=np.array([0,1,1,0,0,1,1,0,0])np.argwhere(A)#输出为:array([[1], [2], [5], [6]]) np.argwhere(A)[:,0]...
2019-12-25 18:09:59 13444
原创 Pytorch 学习(四) 保存加载模型
Pytorch 学习(四) 保存加载模型1.保存模型和参数利用save保存模型,load加载模型torch.save(model, 'save_net.pth')seq_net1 = torch.load('save_net.pth')2.保存参数torch.save(model.state_dict(), 'save_net_params.pth')model1=....mod...
2019-12-21 21:36:10 277
原创 SSD 总结2:default box计算方法
SSD网络是经典的检测模型,在工作学习中经常用到,对其中的一些细节依然有一些不理解的地方,故参考网上的讲解,总结如下,方便后续查阅。SSD网络共产生8732个default box,如下图,具体如何产生可参考SSD总结1:SSD理解分析或其他博客内容。其中8732个default box中,每个feature map中一点怎么产生4个或者6个box,每个box的大小如何?在作者提供的ssd_...
2019-12-20 19:56:29 919
原创 Detectron2安装测试
Detectron2安装测试Detectron2是FAIR开源的基于Pytorch1.3.1的目标检测算法实现.Detectron2-github1.Detectron2安装1.1 安装配置基本环境可参考项目中的Installtionconda create -n detectron2 python=3.7conda activate detectron2PyTorch ...
2019-12-10 22:36:22 20304 35
原创 vim多行插入相同的内容
vim多行插入相同的内容1: 定位光标2: CTRL+v #进入Visual Mode。3: j #选择要在哪些行加入?!4: I #一定是大写!5: 输入要插入的文本6: ESC...
2019-12-10 11:54:31 2997 1
原创 yacs介绍、安装、使用
yacs介绍、安装、使用1.yacs介绍yacs的作者大名鼎鼎的Ross Girshick,faster-rcnn的作者。github地址:https://github.com/rbgirshick/yacsyacs是一个轻量级用于定义和管理系统配置的开源库,是科学实验软件中常用的参数配置。在机器学习、深度学习模型训练过程中的超参数配置(卷积神经网络的深度,初始学习率等)。科学实验的重现性至...
2019-12-01 20:22:40 11271
原创 Detectron2在CPU上执行出现“ Torch not compiled with CUDA enabled”的错误
Detectron2在CPU上执行出现“ Torch not compiled with CUDA enabled”的错误 在没有GPU显卡的电脑上配置Detectron2环境,配置OK后,运行如下代码,权重文件提前下载好,放在一个固定的位置,出现错误“Torch not compiled with CUDA enabled”python demo/demo.py \ --conf...
2019-11-30 22:22:56 28716 6
原创 caffe错误- error(-215)(scn==3) in function cvtColor
caffe错误- error:(-215)(scn==3) in function cvtColor出现错误如下:原因分析图像中有灰度图像,使caffe加载处理数据时出现错误。解决方法如下,在transform_parm中添加代码:force_color:trueforce_color的含义在caffe.proto中有定义如下,将图像变成3通道输入。...
2019-11-26 10:55:59 313
原创 Pytorch学习(二):动态图和静态图
动态图和静态图 在学习Pytorch时,参考“深度学习入门之Pytorch”,其中一些觉得比较重要并且容易忘记的部分记录在此,在此感谢本书作者。 目前神经网络框架分为静态图框架和动态图框架,PyTorch 和 TensorFlow、Caffe 等框架最大的区别就是他们拥有不同的计算图表现形式。 TensorFlow 使用静态图,这意味着我们先定义计算图,然后不断使用它,而在 PyTorch...
2019-11-24 21:51:29 1980
原创 python 处理1对n的问题
python 处理1对n的问题 问题描述:如下图,当一个图形中有多个物体,检测得到的结果为,图像,列表,准确率,位置信息,将图像名作为key,后续值作为一个value存在一个字典里。data/safety_hat/test/1000.jpg 1 0.988243 722 106 742 128data/safety_hat/test/1000.jpg 1 0.978737 545 103 ...
2019-11-20 21:25:50 247
原创 Caffe源码分析--Blob代码分析
Blob代码分析1.原理分析Caffe使用Blob结构在CNN网络中存储、传递、修改数据。 对于批量2D图像数据,Blob的维度为: 图像数量N × 通道数C × 图像高度H × 图像宽度W 在此种场景下,Blob使用4维坐标定位数据,如(n, c, h, w),其中n为图像序号(0到N-1),c为通道序号(0到C-1),h为图像行序(0到H-1),w为图像列序(0到W-1)。那么我们...
2019-11-18 21:51:48 383
原创 C++ 引用
C++ 引用(&) 在C语言中&的作用是取地址符,常常用在函数传参中的指针赋值,但在C++中&表示引用,即对已定义的变量的别名(另一个名称)。引用变量的主要用途是用在函数的形参。1.引用介绍引用就是对定义的某一变量(目标)的一个别名,对引用的操作与对变量直接操作完全一样。引用的声明方法:类型标识符 &引用名=目标变量名;如下程序:#include &l...
2019-11-16 21:52:04 633
原创 Gaussian Yolov3 Segmentation fault问题
Gaussian Yolov3 Segmentation fault问题 ICCV 2019会议上 Jiwoong Choi等人在YOLOV3的基础上进行修改得到了Gaussian YOLOv3网络结构,该网络结构的mAP比YOLOv3(512x512)高3个点,具体论文分析,可参考深度学习系列之Gaussian_YOLOv3 个人总结 利用github上的gaussian Yolov3...
2019-11-16 21:27:28 1724 3
原创 深度学习系列之Gaussian_YOLOv3 个人总结
深度学习系列之Gaussian_YOLOv3 个人总结https://github.com/jwchoi384/Gaussian_YOLOv3 ICCV 2019会议上 Jiwoong Choi等人在YOLOV3的基础上进行修改得到了Gaussian YOLOv3网络结构,该网络结构的mAP比YOLOv3(512x512)高3个点。创新点 作者认为在常规的Single Stage目标检...
2019-11-12 16:59:33 4452 3
原创 Yolov2、Yolov3、Gaussian_Yolov3使用K-means聚类计算anchor boxes方法
Yolov2、Yolov3、Gaussian_Yolov3使用K-means聚类计算anchor boxes方法 Yolo系列模型的默认anchor 是基于COCO训练集,使用K-means聚类算法获得的,在实际应用中,可以根据自己的任务数据集通过聚类得到anchor box的默认尺寸。代码参考如下:from os import listdirfrom os.path import is...
2019-11-12 16:53:29 1911 2
原创 caffe源码分析--SyncedMemory 内存管理机制
caffe源码分析–SyncedMemory 内存管理机制 SyncedMemory 是caffe中用来管理内存分配和CPU、GPU数据及同步的类,只服务于Blob类。SyncedMemory 对象管理的是一个tensor的数据对象,这个对象可能只存在CPU上,也有可能存在GPU上,或者同时在两个位置上,如何保证在CPU和GPU上的数据能同步呢?1. 自动机模型管理 SyncedMemo...
2019-11-09 21:14:14 461
原创 Caffe vgg-SSD训练错误【Check failed 0 == bottom[0]-count() % explicit_count (0 vs
Caffe vgg-SSD训练错误【Check failed: 0 == bottom[0]->count() % explicit_count (0 vs. 8) bottom count (74088) must be 】问题描述:VGG-SSD训练自己的数据时出现如下错误:解决方案:检查test.prototxt中mbox_conf_reshape层layer { na...
2019-10-31 16:37:28 487 1
原创 利用Python生成颜色
利用Python生成随机颜色import randomdef randomcolor(): colArr = ['1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'] color = "" for i in range(6): color += colArr[random.randint(...
2019-10-29 14:55:04 2245
原创 Google protocol buffer简介安装及实例
Google protocol buffer简介安装及实例1.简介protocolbuffer(以下简称PB)是google 的一种数据交换的格式,它独立于语言,独立于平台。google 提供了三种语言的实现:java、c++ 和 python,每一种实现都包含了相应语言的编译器以及库文件。由于它是一种二进制的格式,比使用 xml 进行数据交换快许多。可以把它用于分布式应用之间的数据通信或者异...
2019-10-02 14:21:19 530
转载 CVPR2019 | 论文分类汇总
CVPR2019 | 论文分类汇总(190611 更新)原文地址:http://bbs.cvmart.net/topics/302/cvpr2019paper作为计算机视觉领域三大顶会之一,CVPR2019(2019.6.16-6.19在美国洛杉矶举办)被CVers 重点关注。目前CVPR 2019 接收结果已经出来啦,相关报道:1300篇!CVPR2019接收结果公布,你中了吗?开设...
2019-09-16 14:15:41 69529 3
原创 ubuntu配置novnc通过web访问服务器
希望通过vnc去连接主机去看控制服务器系统,集成到web中使用,novnc是一种选择。环境如下,两个主机host1 host2,web装载81.224中,环境使用的Ubuntu 16.04具体操作如下:1.服务器端安装服务器ip地址:192.168.102.1(1) 安装vncserversudo apt-get install tightvncserver使用如下命令查看安装安装的...
2019-09-03 11:05:05 8536 2
翻译 LSTM python 实现理解
LSTM理解本文是对Nico’s blog Simple LSTM 翻译. 几个星期前,我在Github上发布了一些LSTM代码,以帮助人们了解LSTM在实现层面的工作方式。 前向传递在其他地方都有很好的解释并且很容易理解[可参考wangduo对LSTM翻译],但是我自己导出了backprop方程,并且backprop代码没有任何解释。 这篇文章的目的是在LSTM的背景下解释所谓的反向传播。...
2019-05-09 17:38:14 4585 1
原创 Python diag函数
Python diag函数功能:1.二维数组取出对角线上的元素;2.一维数组将数组中的每个元素作为对角线上元素形成二维数组;eg1:import numpy as npb = np.arange(1, 10).reshape(3, 3)barray([[1, 2, 3], [4, 5, 6], [7, 8, 9]])np.diag(b)arra...
2019-04-28 15:03:20 3134
原创 SR总结文章阅读理解
A Deep Journey into Super-resolution: A Survey 本文总结了使用深度学习进行图像超分辨的30多种方法,对文章内容进行简单简介,具体内容参考原论文1.网络结构分类 文中作者将SISR分为9个类型,每个类型的代表模型如下图所示: 下图对每个模型进行了图形归纳,如查看详细信息,请查阅相关论文。2.计算量、参数与PSNR 作者将一些算法的...
2019-04-24 12:27:57 1093
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人