SVM支持向量机

本文详细介绍了支持向量机SVM的原理,包括线性分类、最大几何间隔的概念,以及如何通过拉格朗日乘子法求解问题。接着,文章通过实例展示了如何画出决策边界,使用SVM进行非线性分类,特别是在iris数据集上的应用,以及使用多种核函数进行回归任务。
摘要由CSDN通过智能技术生成

支持向量机SVM(Support Vector Machine)

【关键词】支持向量,最大几何间隔,拉格朗日乘子法

一、支持向量机的原理

Support Vector Machine。支持向量机,其含义是通过支持向量运算的分类器。其中“机”的意思是机器,可以理解为分类器。
那么什么是支持向量呢?在求解的过程中,会发现只根据部分数据就可以确定分类器,这些数据称为支持向量。
见下图,在一个二维环境中,其中点R,S,G点和其它靠近中间黑线的点可以看作为支持向量,它们可以决定分类器,也就是黑线的具体参数。

1.png

解决的问题:

  • 线性分类

在训练数据中,每个数据都有n个的属性和一个二类类别标志,我们可以认为这些数据在一个n维空间里。我们的目标是找到一个n-1维的超平面(hyperplane),这个超平面可以将数据分成两部分,每部分数据都属于同一个类别。
其实这样的超平面有很多,我们要找到一个最佳的。因此,增加一个约束条件:这个超平面到每边最近数据点的距离是最大的。也成为最大间隔超平面(maximum-margin hyperplane)。这个分类器也成为最大间隔分类器(maximum-margin classifier)。
支持向量机是一个二类分类器。

  • 非线性分类

SVM的一个优势是支持非线性分类。它结合使用拉格朗日乘子法和KKT条件,以及核函数可以产生非线性分类器。

SVM的目的是要找到一个线性分类的最佳超平面 f(x)=xw+b=0。求 w 和 b。

首先通过两个分类的最近点,找到f(x)的约束条件。

有了约束条件,就可以通过拉格朗日乘子法和KKT条件来求解,这时,问题变成了求拉格朗日乘子αi 和 b。

对于异常点的情况,加入松弛变量ξ来处理。

非线性分类的问题:映射到高维度、使用核函数。

线性分类及其约束条件

SVM的解决问题的思路是找到离超平面的最近点,通过其约束条件求出最优解。

3.png

最大几何间隔(geometrical margin)

5.PNG

求解问题w,b

我们使用拉格朗日乘子法(http://blog.csdn.net/on2way/article/details/47729419)
来求w和b,一个重要原因是使用拉格朗日乘子法后,还可以解决非线性划分问题。
拉格朗日乘子法可以解决下面这个问题:

6.PNG

消除w之后变为:

7.PNG

可见使用拉格朗日乘子法后,求w,b的问题变成了求拉格朗日乘子αi和b的问题。
到后面更有趣,变成了不求w了,因为αi可以直接使用到分类器中去,并且可以使用αi支持非线性的情况.

二、实战

1、画出决策边界

导包sklearn.svm

# SVC用于分类
from sklearn.svm import SVC

import numpy as np

import matplotlib.pyplot as plt

随机生成数据,并且进行训练np.r_[]

#画二维的点,特征只有两个
# 两簇点
dot1 = np.random.randn(20, 2) - [2, 2]
dot2 = np.random.randn(20, 2) + [3, 2]

# 将两簇点行级联
dot = np.concatenate([dot1, dot2])
dot.shape
  • 输出

    (40, 2)

# 两类点分类

target = [0] * 20 + [-1] * 20

训练模型,并训练

# It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable.
# kernel 核心 linear 线性 poly 多项式 rbf基于半径的    
svc = SVC(kernel= 'linear')
X_train = dot
y_train = target
svc.fit(X_train, y_train)
  • 输出

    SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape=’ovr’, degree=3, gamma=’auto’, kernel=’linear’,
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)

提取系数获取斜率

X_train.shape
  • 输出

    (40, 2)

coef_ = svc.coef_

线性方程的截距

b = svc.intercept_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值