- 博客(123)
- 资源 (1)
- 收藏
- 关注
原创 【软件工程】图书馆自习室及座位管理系统的分析与设计
该系统需要解决本学校学生在图书馆盲目寻找自习室教室及座位的问题。学生通过该系统可以实时查看图书馆自习室与座位的使用情况,使学生方便、快捷地在图书馆查找空余的座位。图书馆领导及管理人员也可以通过本系统查询自习室的使用人次和座位的预定情况进行统计,及时制定行营的对策,科学合理的配置相关资源。 本系统设计的最终目的是实现对座位的有序高效管理。为此,在系统设计时,应做好用户需求调查,充分了解学生的实际需求,保证系统具有良好的易用性、稳定性和扩展性。......
2022-06-11 12:44:41 21245 5
原创 [数据库课程设计]基于Sql Server的教室信息管理系统(附部分源码)
在大学里,教室仍然是教学的主要场所,也是学生学习的重要场所,所以教室环境和设备直接影响到教学活动的开展和学生的学习。为了保证教室环境良好的运转,教室的管理也就显得十分的必要和重要。但是教室的管理也并不是一件很容易的事情。教室的使用具有一定的计划性和流动性,即一个班在相应的时间里,所上的课程和使用的教室是固定的,但是不同的课程在不同的时间里会使用不同的教室,这与教务处的课程安排是密切相关的。为此,经过较详细的调查和慎重的思考,我决定做一个教室管理系统,来解决这些问题,使管理简化。......
2021-12-22 13:02:45 81997 21
原创 【项目实战】基于 LLaMA-Factory 通过 LoRA 微调 Qwen2
LLaMA-Factory是一个由北京航空航天大学的郑耀威开发的开源框架,作为一个功能强大且高效的大模型微调框架,通过其用户友好的界面和丰富的功能特性,为开发者提供了极大的便利。本文章记录了LLaMA-Factory在本地的部署以及使用,从最后的测试效果发现训练的效果其实并不理想,不过初有成效,初步判断和数据集规模训练轮数以及参数配置等有关,后期将针对这些方面进行相应的调整,争取达到目标效果。
2024-11-16 16:51:58 1245
原创 我的创作纪念日
创作规划:我计划继续在我的博客上分享更多的技术文章和研究心得,希望能够通过我的分享帮助到更多的人,同时也希望能够吸引更多的合作机会。粉丝关注:我的技术分享和研究心得吸引了许多志同道合的朋友,我获得了超过23000名粉丝的关注,这对我来说是莫大的鼓励。领域同行:通过创作,我结识了许多在学术和技术领域内的同行,我们经常交流最新的研究成果和行业动态,极大地拓宽了我的视野。生活的一部分:我习惯于在每天的学习研究之余,花时间整理和分享我的发现和思考,这已经成为我日常生活的一部分。我的创作之旅已经走过了四年。
2024-11-08 20:56:45 244
原创 【案例演示】图像描述大模型示例及概念解释
模型库是可重用代码段的集合,特别是在机器学习和深度学习领域,模型库通常指的是预训练模型的集合。这些预训练模型可以在各种任务上进行微调,以适应特定的应用场景。模型库的概念在于提供一个资源共享的平台,让开发者和研究人员可以轻松地访问和使用这些模型,从而加速开发过程并促进知识的共享和技术的创新。
2024-10-24 20:57:21 371
原创 【安装教程】Windows10环境下Pytorch(GPU版)的安装与配置
PyTorch是一个开源的深度学习框架,由Facebook的人工智能研究团队开发。它提供了灵活的张量计算和自动求导功能,适合于研究和生产环境。由于其动态计算图的特性,PyTorch在模型构建和调试上非常方便,受到众多研究人员和开发者的欢迎。PyTorch支持GPU加速,具备丰富的库和工具,例如用于计算机视觉的TorchVision和用于自然语言处理的TorchText。
2024-10-14 21:59:32 1687
原创 【安装教程】Windows环境下Apache Jena Fuseki的安装与配置
Apache Jena Fuseki 是一个开源的 SPARQL 服务器,用于存储和查询 RDF 数据。它提供了一个 RESTful API,使用户能够通过 SPARQL 查询语言对数据进行操作。Fuseki 支持多种数据存储选项,包括内存存储和持久化存储,允许用户轻松地上传、管理和查询大规模的语义数据。它广泛应用于构建知识图谱和语义 web 应用。Apache Jena Fuseki 的应用场景知识图谱:用于构建和查询复杂的知识图谱,整合来自不同源的数据。语义网。
2024-09-23 20:23:27 1162
原创 【安装教程】Windows环境下Neo4j的安装与配置
Neo4j 的图形模型由节点和边组成,节点代表实体或对象,边表示它们之间的关系。节点和边都可以拥有属性,这些属性可以是任何类型的数据。JDK 提供了执行 Java 应用程序所需的基础库和工具,因此在安装 Neo4j 之前必须确保系统中已安装合适版本的 JDK,以确保数据库可以正常启动和运行。Cypher 的查询可以返回节点、边、节点和边之间的关系、关系的属性等。这个网址,是微云的Neo4j产品网页,其中包含最新版本及历史版本,同时也包括相关驱动程序、技术文档和《Neo4j 权威指南》的下载。
2024-09-23 19:51:31 2772
原创 【机器学习】ROC曲线
接受者操作特性曲线(receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。在二战期间,雷达系统被广泛应用于检测敌方飞机。为了优化雷达系统的性能,研究人员需要找到一种评估雷达系统的性能的方法。他们引入了信号检测理论中的TPR(真阳性率)和FPR(假阳性率)的概念。TPR表示在所有实际存在目标的情况下,系统正确检测到目标的比例。FPR则表示在所有实际不存在目标的情况下,系统错误地报告目标存在的比例。
2024-09-22 16:58:49 1748
原创 【机器学习】SVM 支持向量机
具体而言,SVM首先将数据映射到高维空间,并在该空间中找到一个最优的超平面,使得该超平面能够将不同类别的数据点有效地分开。其中,对于最优超平面的定义是使得间隔最大化,即离超平面最近的数据点到超平面的距离最大化。用于计算核函数值的函数,其实现了线性核和径向基函数(RBF)核。高斯核函数是一种常用的非线性核函数,它通过计算数据点之间的相似度来建模非线性关系。线性核函数是 SVM 默认的核函数,它对应于线性分类器。SVM最终分类的过程是将新的数据点映射到高维空间,并根据其位置与最优超平面的关系来进行分类。
2024-09-22 16:39:40 1259
原创 【机器学习】经典数据集鸢尾花的分类识别
鸢尾花(Iris)是单子叶百合目花卉,是一种比较常见的花,而且鸢尾花的品种较多。鸢尾花数据集(Iris dataset)是非常著名的机器学习数据集之一,常被用来进行分类和模式识别任务的训练和评估。鸢尾花数据集最初由Edgar Anderson 测量得到,而后在著名的统计学家和生物学家R.A Fisher于1936年发表的文章中被使用,用其作为线性判别分析(Linear Discriminant Analysis)的一个例子,证明分类的统计方法,从此而被众人所知,尤其是在机器学习这个领域。
2024-09-19 22:35:39 4276 5
原创 【ML Olympiad】预测地震破坏——根据建筑物位置和施工情况预测地震对建筑物造成的破坏程度
ML Olympiad - Predicting Earthquake Damage是一个由Kaggle和DrivenData合作举办的比赛,旨在通过机器学习算法来预测尼泊尔地震后房屋的损坏程度。这个比赛提供了一个数据集,其中包含了尼泊尔地震期间房屋的各种特征信息,以及每个房屋的损坏程度标签。参赛者需要利用提供的数据集构建一个模型,通过分析房屋的特征信息来预测房屋的损坏程度。挑战在于需要处理大量的结构化数据,并建立一个高效的预测模型。
2024-05-26 17:25:11 937
原创 【原理分析】用JAVA还原刘谦在2024央视春晚的扑克牌魔术
央视春晚与魔术师刘谦从2009年开始,近十年间深度捆绑,刘谦开辟了春晚近景魔术的先河,一句“见证奇迹的时刻”成为刘谦在观众心中的Slogan。2024年,刘谦重返央视春晚舞台,从观众的反响上来看,可以说,刘谦还是刘谦。(当然,还有没拼上的小尼哈哈哈哈)他将数学的逻辑和推理与魔术的幻觉和娱乐性相结合,使得观众在欣赏他的表演过程中不仅能感受到魔术的神秘感,还能够从中领略到数学的美妙之处引发对数学的讨论。这种结合不仅提升了魔术表演的艺术价值,还为观众带来了一种全新的数学体验。
2024-02-13 23:39:24 1557 1
原创 半年没发过文章,这个博主竟然...
第一次写这样的记录性的文章,这篇文章可能不会有太过于华丽的辞藻,但是它将展现我个人的真实经历和内心感受。在过去的时间里,我经历了各种挑战和机遇,经历了成功和失败的起伏。这些经历塑造了我成为现在的自己,也让我更加坚定地追求自己的梦想。回顾2023年下半年,我经历了成功、失败和未知,每一次经历都是成长的一部分。让我们向未来展望,怀揣梦想,坚持追求,相信自己的实力,勇往直前。无论未来会带给我们什么,我们都要坚定地走下去,创造属于自己的精彩故事。
2024-01-02 13:35:48 1382
原创 【MySQL】7、常用数据类型
字符编码:字符型数据类型如CHAR、VARCHAR和TEXT都需要指定字符编码(Character Set),以确保正确地存储和处理不同语言的字符。综上所述,选择合适的数据类型是设计和使用MySQL数据库的关键一步,需要考虑存储空间、数据精度和范围、字符编码、日期时间格式、性能和查询优化等方面的因素。在存储日期和时间数据时,需要确保选择适当的数据类型和格式,以便正确地保存和操作这些值。根据实际需求,选择适当的精度和范围,以确保存储的数据准确无误,并且能够满足计算和查询的要求。
2023-06-27 11:29:22 521
原创 【MySQL】6、事务
数据库中的事务(Transaction)是指由一组数据库操作所组成的逻辑单位,这些操作要么全部成功执行,要么全部不执行,不存在部分执行的情况。如果有事务a,和事务b,a事务对数据进行操作,在操作的过程中,事务没有被提交,但是b可以看见a操作的结果。如果两个不同的地方,都在进行操作,如果事务a开启之后,他的数据可以被其他事务读取到。**脏读:**一个事务读到了另外一个事务没有提交的数据,就叫做 脏读。2、在 REPEATABLE-READ 隔离级别下,又会出现什么问题?隔离级别越高,性能越差!
2023-06-27 11:05:50 339
原创 【MySQL】5、连接查询
连接查询是进行复杂数据检索和统计分析的重要工具,可以帮助我们从多个表中获取有关联的数据。通过理解连接查询的原理和注意事项,我们可以更好地运用它并获取准确、一致的查询结果。
2023-06-27 10:50:36 794
原创 【MySQL】3、数据库的三大设计范式
满足第一范式的前提下,其他列都必须完全依赖主键列。如果出现不完全依赖,只可能发生在联合主键的情况下。这就不满足第二范式:其他列都必须完全依赖于主键列!myorder 表中 :product_id。数据表中的所有字段都是不可分割的原子值。
2023-06-22 10:00:59 358
原创 【MySQL】2、MySQL建表中的约束
多个主键 ,这里面每个主键都不能为空,并且加起来不重复即可。唯一约束的字段仅仅是数值上的不重复,可以为空,可以多个。使某个字段不重复且不得为空,确保表内所有数据的唯一性。如果忘记设置主键,还可以通过sql语句设置(两种方式)涉及到父表,子表(主表副表),主表的数据被副表引用。该字段的值不可以重复。主键约束只能有一个,并且不重复不为空;主键由系统自动递增分配。约定某个字段的默认值。
2023-06-22 00:03:31 978
原创 【MySQL】1、使用终端操作数据库
数据库的逻辑:数据库服务器下的第一层级是多个数据库,每个数据库下又有很多个表。比如,员工信息就能算一个databases,员工的个人情况,部门的情况等就是里面的一张张tables。常规操作即为增删改查。
2023-06-21 19:24:27 2461
原创 Docker的安装部署以及配置的操作流程(图文)
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows操作系统的机器上,也可以实现虚拟化。第二种方式:Docker 以 centos 镜像创建一个新容器,然后在容器里执行 bin/echo “Hello world”,然后输出结果。配置Docker加速器,将会提升在国内获取Docker官方镜像的速度,否则后面下载镜像的过程会很慢,甚至有可能无法下载镜像。,如果从结果中看到了如下内容,说明配置成功。
2023-06-21 18:18:49 7262
原创 【高性能计算】监督学习之支持向量机分类实验
然后,计算测试样本与最优超平面之间的距离(距离的计算是以超平面上的支持向量计算的)。(3) 如果 kernelType 为 ‘rbf’,那么就使用径向基函数(RBF)核计算 kernelValue,这里计算每个训练样本与待计算样本之间的欧氏距离,并根据参数 sigma 计算出高斯核函数的值。总之,SVM 通过特征映射和最优超平面的选择,将不同类别的样本点分开,并在测试时,通过计算距离来对新的样本点进行分类。需要注意的是,SVM的参数设定与数据集密切相关,需要针对不同的数据集进行调整。
2023-06-21 17:49:15 2036
原创 【高性能计算】无监督学习之层次聚类实验
使用sklearn库中的load_iris函数生成一个鸢尾花数据集,并使用自己实现的层次聚类算法和sklearn库中的基于KMeans算法的聚类方法对该数据集进行聚类,最终将聚类结果可视化展示出来。在分裂过程中,先确定一个代表簇,然后将其他数据点与该代表簇进行距离度量,并将距离最远的点分裂出一个新的簇,直到达到预定的簇数。通过对比两种聚类方法的结果,可以看出它们对于数据集的划分存在差异,因为聚类算法的性能和效果受到很多因素的影响,选择适当的聚类算法和参数对于得到理想的聚类结果很关键。
2023-06-21 17:28:32 1963
原创 【高性能计算】基于K均值的划分聚类实验
将y_corrected转换为numpy数组类型,并使用sklearn.metrics模块中的accuracy_score()函数,计算真实标签Y和校正后的标签y_corrected之间的精度,并将结果存储在accuracy_corrected变量中。k均值聚类将样本集合划分为k个子集,构成k个类,将n个样本分到k个类中,每个样本到期所属类的中心的距离最小。然后更新每个类的样本的均值,作为类的新中新;对固定的类中心,计算每个样本到类中心的距离,将每个样本指派到与其最近的中心的类中,构成聚类结果。
2023-06-21 16:47:07 1356
原创 【MongoDB大作业】MongoDB服务器的部署
(1)在/opt/servers/mongodb-demo/mongodb目录下执行“mkdir -p data/db”命令,创建数据文件存放目录。将路径“/opt/servers/mongodb-demo/mongodb/bin”添加至PATH环境变量中,使得在任何路径下都可以执行bin目录下的应用程序。(1) 登陆NoSQL_02,执行“vi /etc/sysconfig/network-scripts/ifcfg-ens33”命令编辑网卡配置文件,将IP地址修改为192.168.80.135。
2023-06-21 11:18:25 2260
原创 【MongoDB】五、MongoDB分片集群的部署
2、执行“vi”命令,在配置文件mongodb_shard1.conf mongodb_shard2.conf mongodb_shard3.conf中添加分片服务器1的相关参数(服务器zrz01)4、执行“vi”命令,在配置文件mongodb_shard1.conf mongodb_shard2.conf mongodb_shard3.conf中添加分片服务器1的相关参数(服务器zrz02)2、在服务器nosql01的配置服务器、分片服务器以及路由服务器的日志目录下,创建对应的日志管理文件。
2023-06-21 10:49:33 5375 3
原创 【MongoDB】四、MongoDB副本集的部署
在实验过程中遇到了很多硬件或者是软件上的问题,请教老师,询问同学,上网查资料,都是解决这些问题的途径。(1)分别在三台服务器XXX01、XXX02和XXX03上以副本集模式启动MongoDB服务。(1)分别在三台服务器zrz01、zrz02和zrz03上以副本集模式启动MongoDB服务。能够通过部署副本集理解副本集机制,从而解决大数据项目中数据丢失的问题。(2)在服务器XXX01的MongoDB客户端中执行副本集初始化操作。(2)在服务器zrz01的MongoDB客户端中执行副本集初始化操作。
2023-06-21 09:52:21 2423
原创 【MongoDB】三、使用Java连接MongoDB
在主函数中连接数据库stu,在数据库stu中新建集合course,删除新建集合course,在student集合中插入文档{_id:“1016”,name:“唐开平”,sex:“女”,age:18,major:“软件技术”,credits:42,score:74},将_id为1014的学生成绩修改为80,删除_id为1012的学生。在实验过程中遇到了很多硬件或者是软件上的问题,请教老师,询问同学,上网查资料,都是解决这些问题的途径。4、尽我能力帮助他人,在帮助他人的同时你会深刻巩固知识。
2023-06-21 08:42:05 4017 1
原创 【高性能计算】浅析高性能计算的优点、缺点以及未来的发展方向
未来,软件技术将在高性能计算领域发挥更重要的作用,未来会有更多的开源软件和工具,以及更加灵活和可扩展的编程模型,从而降低软件的复杂度,并提高应用的效率和可靠性。通过云计算和边缘计算的融合,可以实现资源的共享和整合,从而提高数据处理和分析的效率和质量。综上所述,高性能计算未来将以芯片技术进步、软件技术创新、数据中心优化、云计算和边缘计算融合、量子计算技术发展等为重要方向,以实现更高效、可靠、安全和智能化的数据处理和分析,从而推动科学、工程和医学等领域的发展。这限制了高性能计算的普及和推广。
2023-06-14 10:41:46 2005
原创 【高性能计算】经典的串行排序算法和并行排序算法
快速排序也可以并行化处理,它是一种基于分治策略的排序算法,常用的方法是选取一个枢纽元素,将数组划分为两个部分,并将小于枢纽元素的元素放入左侧部分,将大于枢纽元素的元素放入右侧部分。选择排序是一种简单直观的排序算法,它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。归并排序也是一种常见的排序算法,它的核心思想是将待排序数组分成若干个子数组,对每个子数组进行排序,然后再将已经有序的子数组合并成一个有序的数组。冒泡排序是一种简单的排序算法。
2023-06-14 10:33:33 2887
原创 【大数据处理与可视化】八、文本数据分析
词云是对网络中出现的频率比较高的“关键词”予以视觉上的突出,形成关键词渲染,从而过滤掉大量的文本信息,使得浏览网页的人一眼扫过文本就可以领略文本的主旨。首先获取某网站中用户对某卫衣的评价,然后从这些评论文本中筛选出现频率较高的一些词语,并使用词云的方式进行展示,让有意购买此商品的用户能够快速地了解其他用户对该商品的感受,并为他们提供有效的参考依据。在实验过程中遇到了很多硬件或者是软件上的问题,请教老师,询问同学,上网查资料,都是解决这些问题的途径。4、尽我能力帮助他人,在帮助他人的同时你会深刻巩固知识。
2023-05-29 12:51:25 1924 2
原创 【大数据处理与可视化】七、时间序列分析
股票收盘价分析:本实验以“五粮液”股票数据为例,结合时间序列及ARIMA模型对股票收盘价进行分析;使用2003至2018年的股票数据,其中2014-2017年的数据为训练数据,通过对这些数据的训练,实现对2018年1月至3月的收盘价进行预测,并将预测的结果与爬到的真实股价进行绘制对比。通过本次实验,我能够熟练运用时间序列分析和ARIMA模型对数据进行分析。在实验过程中遇到了很多硬件或者是软件上的问题,请教老师,询问同学,上网查资料,都是解决这些问题的途径。1、有疑问前,知识学习前,先用搜索。
2023-05-29 11:32:58 2974 3
原创 【大数据处理与可视化】六、数据可视化
找出河北省占地面积和游客数量位居前三的景点.这里使用了"总面积","游客量"两列数据.为了能够直观的看到这里两列数据,使用直方图.x轴: 景点的名称y轴: 表示占地面积和游客数量从生成的条形图可以看出,接待游客数量处于前三名的景点分别是:秦皇岛北戴河,西柏坡-天戴山,娲皇宫景点占地面积前三分别是:避暑山庄外八庙,野三坡,秦皇岛北戴河。在实验过程中遇到了很多硬件或者是软件上的问题,请教老师,询问同学,上网查资料,都是解决这些问题的途径。3.能够通过借助网络资源,通过自主学习解决数据可视化中遇到的问题。
2023-05-29 11:18:37 3164
原创 【大数据处理与可视化】五、数据聚合与分组运算
通过本次实验,我能熟练运用groupby()方法对数据进行分组,能够熟练运用统计方法和聚合操作对数据进行聚合,及其它常用的分组级运算方法。在实验过程中遇到了很多硬件或者是软件上的问题,请教老师,询问同学,上网查资料,都是解决这些问题的途径。4、尽我能力帮助他人,在帮助他人的同时你会深刻巩固知识。(2)统计男篮运动员的年龄、身高、体重的极差值。(1)统计篮球运动员的平均年龄、身高、体重。3、选择交流平台,如QQ群,网站论坛等。1、有疑问前,知识学习前,先用搜索。(3)统计篮球运动员的体质指数。
2023-05-29 11:10:48 2532
原创 浅谈国内数据安全现状及未来趋势
2019年4月8日上午,据美国科技媒体ZDNet报道,有研究人员发现中国企业2019年前3个月出现数起简历信息泄露事故,涉及5.9亿份简历。大多数简历之所以泄露,主要是因为MongoDB和ElasticSearch服务器安全措施不到位,不需要密码就能在网上看到信息,或者是因为防火墙出现错误导致。中国 企业 简历 数据库 信息泄露。数据安全的定义,是指通过采取必要措施,确保数据处于有效保护和合法利用的状态,以及具备保障持续安全状态的能力。
2023-05-19 09:04:28 1766
原创 【MongoDB】二、MongoDB数据库的基本操作
通过本次实验,我熟练地使用Mongo Shell对数据库,集合,文档进行增删改的操作,以及流畅使用 $group $limit $match $sort $project $skip等聚合管道操作符对文档进行查询、处理及分析。在实验过程中遇到了很多硬件或者是软件上的问题,请教老师,询问同学,上网查资料,都是解决这些问题的途径。最终将遇到的问题一一解决最终完成实验。
2023-05-03 22:34:02 2959
原创 【大数据处理与可视化】四、数据预处理
预处理部分地区信息:给定北京和天津地区的统计信息,这些数据中都或多或少的存在一些问题,如重复的数据、缺失的数据。请使用Pandas对爬取的数据进行预处理操作,具体包括:检查重复数据,一旦发现有重复的数据,就需要将其进行删除。检查异常,一旦发现数据中存在异常,通常先要对原始数据进一步确认,如果是错误的数值,则直接使用正确的数值进行替换。通过本次实验,我能熟练运用数据清洗的常见操作检查和处理各类有问题的数据,其中包括重复值的查询和处理,缺失值的查询和处理,基于three_sig和基于箱型图的异常值的查询处理。
2023-05-03 22:01:48 3309 1
neo4j-chs-community-5.23.0-windows.zip
2024-09-23
apache-jena-fuseki-5.1.0.zip
2024-09-23
opencv-contrib-python-4.6.0.66-cp36-abi3-win-amd64.whl
2022-12-30
opencv-python-4.6.0.66-cp36-abi3-win-amd64.whl
2022-12-30
mediapipe-0.9.0-cp39-cp39-win-amd64.whl
2022-12-30
mediapipe-0.9.0.1-cp310-cp310-win-amd64.whl
2022-12-30
mediapipe-0.9.0.1-cp39-cp39-win-amd64.whl
2022-12-30
mediapipe-0.9.0.1-cp37-cp37m-win-amd64.whl
2022-12-30
matplotlib-3.6.2-cp38-cp38-win-amd64.whl
2022-12-30
zabbix-agent-5.0.1-1.el7.x86-64.rpm
2022-12-10
爱心源码(陈飞宇李峋同款)
2022-12-06
Musical Christmas Lights-圣诞树源码
2022-12-06
【数据库课程设计】基于SqlServer的教室信息管理系统
2022-05-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人