题目描述:
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
题意分析:
首先根据题目我们可以知道,我们解答这道题目需要完成的函数名可以为“最近公共祖先”的音译,即lowestCommonAncestor,其次函数的输入是一个二叉搜索树,以及树中的两个子节点。函数的返回值应当是一个满足“最近公共祖先”要求的数节点!
至此,我们可以得到函数形式譬如:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {}
思路:
首先,第一眼看到二叉搜索树这几个字眼,我们几乎可以断定这道题需要使用递归算法。
然后,充分利用二叉搜索树的特征,即根节点左子树的节点的值都小于根节点,根节点右子树的节点的值都大于根节点。
那么,当我们从根节点往下遍历,若当前根节点值大于给定的两个节点的值,则说明两给定节点均在该点左子树中,若当前根节点值小于给定的两个节点的值,则说明两个节点均在该点右子树。
所以,遍历找到的第一个节点的数值在两个给定节点值之间的节点即为结果。
加入用CPP代码将最后一句话翻译过来可以是:
(root->val - p->val) * (root ->val - q->val) <= 0
递归问题2步法:
1.递归结束条件:即(root->val - p->val) * (root ->val - q->val) <= 0
2.递归左,右子树返回值就是要求的结果。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if((root->val - p->val)*(root ->val - q->val) <= 0)//
{
return root;
}
if(root -> val > p -> val)
{
return lowestCommonAncestor(root -> left, p, q);
}
if(root -> val < p -> val)
{
return lowestCommonAncestor(root -> right, p, q);
}
return NULL;
}
};