HDU 4850 欧拉回路的思想

HDU 4850
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4850
题意:
给出字符串长度n,构造一个字符串使得里面任意一个长度大于等于4的连续子串出现且仅出现一次。
思路:
容易知道只要满足长度为4的子串不重复就可以。
感谢这位博主http://blog.csdn.net/keshuai19940722/article/details/37569949参考了思路
构造一个欧拉回路即可。
抽象成模型,发现字符串最大长度是26^4+3,具体画个图就知道了。然后发现每次都是由t1t2t3t4 -> t2t3t4t5,两个字符串拼接起来后变成t1t2t3t4t5,故相当于一个结点t2t3t4走向另一个节点t3t4t5。所以问题就变成如何走不相同的边把所有点都走26次。
然而此处有坑点。因为假设是从’aaa’出发,为了防止中间走回’aaa’导致路径不连通,所以每次不管大小都把’a’放在最后考虑。
源码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int MAXN = 26;
int vis[MAXN][MAXN][MAXN][MAXN];
int in[MAXN][MAXN][MAXN];
int ne[MAXN][MAXN][MAXN][MAXN];
struct Point
{
    int t1, t2, t3, t4;
};
void init()
{
    memset(in, 0, sizeof(in));
    memset(vis, 0, sizeof(vis));
    int t1, t2, t3, t4;
    t1 = t2 = t3 = t4 = 0;
    vis[0][0][0][0] = 1;
    in[t2][t3][t4]++;
    int cnt = 0;
    while(cnt < MAXN * MAXN * MAXN * MAXN ){
        int llv = -1;
        int lv = 26;
        for(int i = 1 ; i < 26 ; i++){
            if(lv > in[t3][t4][i] && vis[t2][t3][t4][i] == 0){
                lv = in[t3][t4][i];
                llv = i;
            }
        }
        if(lv > in[t3][t4][0] && vis[t2][t3][t4][0] == 0)
            llv = 0;
        if(llv == -1)    break;
        in[t3][t4][llv]++;
        vis[t2][t3][t4][llv] = 1;
        ne[t1][t2][t3][t4] = llv;
        t1 = t2, t2 = t3, t3 = t4, t4 = llv;
        cnt++;
    }
}
int main()
{
    init();
    int n;
    while(scanf("%d", &n) != EOF){
        if(n > MAXN * MAXN * MAXN * MAXN + 3){
            printf("Impossible\n");
        }
        else if(n <= 3){
            for(int i = 0 ; i < n ; i++)    printf("a");
            printf("\n");
        }
        else{
            int t1, t2, t3, t4;
            t1 = t2 = t3 = t4 = 0;
            n -= 4;
            printf("aaaa");
            while(n){
                int v = ne[t1][t2][t3][t4];
                printf("%c", 'a' + v);
                n--;
                t1 = t2, t2 = t3, t3 = t4, t4 = v;
            }
            printf("\n");
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值