beihai2013

生命是一个巨大的游乐场,或者空虚无比。

SRM 697 div2 550 推公式

题意:
给50个数ai,这些数都是2幂次数,且这些数都大于1。现在对于P = mul(ai), 是否存在bi,对于每个bi有ai*bi整除P。
思路:
化简之后就变成了S = sum(ai的幂次),是否存在bi使得(bi*ai的幂次)被S整除。
赛中的时候想了高斯消元,发现并不能做,因为系数比较多而且无法控制ai的幂次必须大于等于1。
实际上这是一道公式题。
易得ai >= S / bi
故a1 + a2 +… + an >= S/b1 + S/b2 + … + S/bn
1/b1 + 1/b2 + … + 1/bn <= 1
公式推得最巧妙的就是这个>=,把整除条件化简。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/beihai2013/article/details/52351102
上一篇Codeforces 706E 十字链表(dancing link)
下一篇CF 707C 公式
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭