二叉树算法

本文详细介绍了二叉树的各种递归算法,包括前序、中序、后序遍历,翻转二叉树,判断对称、最大深度、最小深度,完全二叉树节点数,平衡二叉树,路径和,构造二叉树,合并二叉树,搜索二叉树,以及二叉搜索树的最近公共祖先等。这些算法展示了递归在解决二叉树问题中的应用。
摘要由CSDN通过智能技术生成

本文的全部内容源自:https://github.com/youngyangyang04/leetcode-master
这里展示所有二叉树相关算法均为Java递归算法:
关于递归的写法,需要遵循以下三个步骤:
(1)递归函数的参数以及返回值 (如果需要搜索整颗二叉树,那么递归函数就不要返回值,如果要搜索其中一条符合条件的路径,递归函数就需要返回值,因为遇到符合条件的路径了就要及时返回。)
(2)确定递归终止条件 (就是当到达叶子节点或者空节点时应该做什么操作)
(3)确定单层递归逻辑 (首先要确定是先序、中序还是后序遍历。这里一定要注意的是单层递归逻辑,单层的意思就是只考虑当前的节点要做什么,或者他的左子节点和右子节点的逻辑,绝不能往下再考虑)

  1. 二叉树的递归遍历
    以前序遍历为例
void traversal(TreeNode root, ArrayList<Integer> list)
{
	if(root == null)
		return ;
	list.add(root.val);
	traversal(root.left, list);
	traversal(root.right, list);
}
  1. 翻转二叉树
void invertTree(TreeNode root)
{
	if(root == null)
		return ;
	swap(root.left, root.right);
	invertTree(root.left);
	invertTree(root.right);
}
  1. 对称二叉树
bool compare(TreeNode left, TreeNode right)
{
	if(left == null && right == null) return true;
	else if(left == null && right != null) return false;
	else if(left != null && right == null) return false;
	else if(left.val == right.val) return true;
	
	bool outside = compare(left.left, right.right);
	bool inside = compare(left.right, right.left);
	return outside && inside;
}
  1. 二叉树的最大深度
int getdepth(TreeNode root)
{
	if(root == null)
		return 0;
	int left = getdepth(root.left);
	int right = getdepth(root.right);
	int depth = 1 + max(left, right);
	return depth;
}
  1. 二叉树的最小深度(根节点到叶子节点的最小距离)
int getdepth(TreeNode root)
{
	if(root == null)
		return 0;
	int left = getdepth(root.left);
	int right = getdepth(root.right);
	if(root.left == null && root.right != null)
		return 1 + right;
	if(root.left != null && root.left == null)
		return 1 + left;
	return min(left, right) + 1;
}
  1. 完全二叉树的节点个数
int count(TreeNode root)
{
	if(root == null)
		return 0;
	int left = count(root.left);
	int right = count(root.right);
	return left + right;
}
  1. 平衡二叉树
bool isBalance(TreeNode root)
{
	if(root == null)
		return 0;
	int left = isBalance(root.left);
	if(left == -1) return -1;
	int right = isBalance(root.right);
	if(right == -1) return -1;
	if(abs(left - right) > 1)
		return -1;
	else
		return 1 + max(left, right);
}
  1. 二叉树的所有路径
class Solution {
    /**
     * 递归法
     */
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> res = new ArrayList<>();
        if (root == null) {
            return res;
        }
        List<Integer> paths = new ArrayList<>();
        traversal(root, paths, res);
        return res;
    }

    private void traversal(TreeNode root, List<Integer> paths, List<String> res) {
        paths.add(root.val);
        // 叶子结点
        if (root.left == null && root.right == null) {
            // 输出
            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < paths.size() - 1; i++) {
                sb.append(paths.get(i)).append("->");
            }
            sb.append(paths.get(paths.size() - 1));
            res.add(sb.toString());
            return;
        }
        if (root.left != null) {
            traversal(root.left, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
        if (root.right != null) {
            traversal(root.right, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
    }
}
  1. 左叶子之和
class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) return 0;
        int leftValue = sumOfLeftLeaves(root.left);    // 左
        int rightValue = sumOfLeftLeaves(root.right);  // 右
                                                       
        int midValue = 0;
        if (root.left != null && root.left.left == null && root.left.right == null) { // 中
            midValue = root.left.val;
        }
        int sum = midValue + leftValue + rightValue;
        return sum;
    }
}
  1. 路径总和(判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和)
class Solution {
   public boolean hasPathSum(TreeNode root, int targetSum) {
        if (root == null) {
            return false;
        }
        targetSum -= root.val;
        // 叶子结点
        if (root.left == null && root.right == null) {
            return targetSum == 0;
        }
        if (root.left != null) {
            boolean left = hasPathSum(root.left, targetSum);
            if (left) {// 已经找到
                return true;
            }
        }
        if (root.right != null) {
            boolean right = hasPathSum(root.right, targetSum);
            if (right) {// 已经找到
                return true;
            }
        }
        return false;
    }
}

// LC112 简洁方法
class Solution {
    public boolean hasPathSum(TreeNode root, int targetSum) {
        
        if (root == null) return false; // 为空退出
        
        // 叶子节点判断是否符合
        if (root.left == null && root.right == null) return root.val == targetSum;

        // 求两侧分支的路径和
        return hasPathSum(root.left, targetSum - root.val) || hasPathSum(root.right, targetSum - root.val);
    }
}

  1. 从中序与后序遍历序列构造二叉树
class Solution {
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        return buildTree1(inorder, 0, inorder.length, postorder, 0, postorder.length);
    }
    public TreeNode buildTree1(int[] inorder, int inLeft, int inRight,
                               int[] postorder, int postLeft, int postRight) {
        // 没有元素了
        if (inRight - inLeft < 1) {
            return null;
        }
        // 只有一个元素了
        if (inRight - inLeft == 1) {
            return new TreeNode(inorder[inLeft]);
        }
        // 后序数组postorder里最后一个即为根结点
        int rootVal = postorder[postRight - 1];
        TreeNode root = new TreeNode(rootVal);
        int rootIndex = 0;
        // 根据根结点的值找到该值在中序数组inorder里的位置
        for (int i = inLeft; i < inRight; i++) {
            if (inorder[i] == rootVal) {
                rootIndex = i;
            }
        }
        // 根据rootIndex划分左右子树
        root.left = buildTree1(inorder, inLeft, rootIndex,
                postorder, postLeft, postLeft + (rootIndex - inLeft));
        root.right = buildTree1(inorder, rootIndex + 1, inRight,
                postorder, postLeft + (rootIndex - inLeft), postRight - 1);
        return root;
    }
}

  1. 从前序与中序遍历序列构造二叉树(虽然整体代码与从中序和后序构造二叉树相同,但是注意递归终止条件那里有所不同)
class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        return helper(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);
    }

    public TreeNode helper(int[] preorder, int preLeft, int preRight,
                           int[] inorder, int inLeft, int inRight) {
        // 递归终止条件
        if (inLeft > inRight || preLeft > preRight) return null;

        // val 为前序遍历第一个的值,也即是根节点的值
        // idx 为根据根节点的值来找中序遍历的下标
        int idx = inLeft, val = preorder[preLeft];
        TreeNode root = new TreeNode(val);
        for (int i = inLeft; i <= inRight; i++) {
            if (inorder[i] == val) {
                idx = i;
                break;
            }
        }

        // 根据 idx 来递归找左右子树
        root.left = helper(preorder, preLeft + 1, preLeft + (idx - inLeft),
                         inorder, inLeft, idx - 1);
        root.right = helper(preorder, preLeft + (idx - inLeft) + 1, preRight,
                         inorder, idx + 1, inRight);
        return root;
    }
}

  1. 合并二叉树(给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠,对应重叠部分数值相加,否则不为null的节点作为新节点)
class Solution {
    // 递归
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 == null) return root1;

        TreeNode newRoot = new TreeNode(root1.val + root2.val);
        newRoot.left = mergeTrees(root1.left,root2.left);
        newRoot.right = mergeTrees(root1.right,root2.right);
        return newRoot;
    }
}
  1. 二叉搜索树中的搜索(给定二叉搜索树(BST)的根节点和一个值。 找到节点值等于给定值的节点, 返回以该节点为根的子树。 节点不存在返回 NULL。)
class Solution {
    // 递归,普通二叉树
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        TreeNode left = searchBST(root.left, val);
        if (left != null) {
            return left;
        }
        return searchBST(root.right, val);
    }
}

class Solution {
    // 递归,利用二叉搜索树特点,优化
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        if (val < root.val) {
            return searchBST(root.left, val);
        } else {
            return searchBST(root.right, val);
        }
    }
}

class Solution {
    // 迭代,利用二叉搜索树特点,优化,可以不需要栈
    public TreeNode searchBST(TreeNode root, int val) {
        while (root != null)
            if (val < root.val) root = root.left;
            else if (val > root.val) root = root.right;
            else return root;
        return root;
    }
}

  1. 验证二叉搜索树
class Solution {
    // 递归
    TreeNode max;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        // 左
        boolean left = isValidBST(root.left);
        if (!left) {
            return false;
        }
        // 中
        if (max != null && root.val <= max.val) {
            return false;
        }
        max = root;
        // 右
        boolean right = isValidBST(root.right);
        return right;
    }
}

// 简洁实现·递归解法
class Solution {
    public boolean isValidBST(TreeNode root) {
        return validBST(Long.MIN_VALUE, Long.MAX_VALUE, root);
    }
    boolean validBST(long lower, long upper, TreeNode root) {
        if (root == null) return true;
        if (root.val <= lower || root.val >= upper) return false;
        return validBST(lower, root.val, root.left) && validBST(root.val, upper, root.right);
    }
}
// 简洁实现·中序遍历
class Solution {
    private long prev = Long.MIN_VALUE;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        if (!isValidBST(root.left)) {
            return false;
        }
        if (root.val <= prev) { // 不满足二叉搜索树条件
            return false;
        }
        prev = root.val;
        return isValidBST(root.right);
    }
}

  1. 二叉搜索树的最小绝对差
class Solution {
    TreeNode pre;// 记录上一个遍历的结点
    int result = Integer.MAX_VALUE;
    public int getMinimumDifference(TreeNode root) {
       if(root==null)return 0;
       traversal(root);
       return result;
    }
    public void traversal(TreeNode root){
        if(root==null)return;
        //左
        traversal(root.left);
        //中
        if(pre!=null){
            result = Math.min(result,root.val-pre.val);
        }
        pre = root;
        //右
        traversal(root.right);
    }
}

  1. 二叉搜索树中的众数
class Solution {
    ArrayList<Integer> resList;
    int maxCount;
    int count;
    TreeNode pre;

    public int[] findMode(TreeNode root) {
        resList = new ArrayList<>();
        maxCount = 0;
        count = 0;
        pre = null;
        findMode1(root);
        int[] res = new int[resList.size()];
        for (int i = 0; i < resList.size(); i++) {
            res[i] = resList.get(i);
        }
        return res;
    }

    public void findMode1(TreeNode root) {
        if (root == null) {
            return;
        }
        findMode1(root.left);

        int rootValue = root.val;
        // 计数
        if (pre == null || rootValue != pre.val) {
            count = 1;
        } else {
            count++;
        }
        // 更新结果以及maxCount
        if (count > maxCount) {
            resList.clear();
            resList.add(rootValue);
            maxCount = count;
        } else if (count == maxCount) {
            resList.add(rootValue);
        }
        pre = root;

        findMode1(root.right);
    }
}

  1. 二叉树的最近公共祖先
    在这里插入图片描述
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        return lowestCommonAncestor1(root, p, q);
    }
    public TreeNode lowestCommonAncestor1(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null || root == p || root == q) {
            return root;
        }
        TreeNode left = lowestCommonAncestor1(root.left, p, q);
        TreeNode right = lowestCommonAncestor1(root.right, p, q);
        if (left != null && right != null) {// 左右子树分别找到了,说明此时的root就是要求的结果
            return root;
        }
        if (left == null) {
            return right;
        }
        return left;
    }
}
  1. 二叉搜索树的最近公共祖先
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        return lowestCommonAncestor1(root, p, q);
    }
    public TreeNode lowestCommonAncestor1(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null || root == p || root == q) {
            return root;
        }
        TreeNode left = lowestCommonAncestor1(root.left, p, q);
        TreeNode right = lowestCommonAncestor1(root.right, p, q);
        if (left != null && right != null) {// 左右子树分别找到了,说明此时的root就是要求的结果
            return root;
        }
        if (left == null) {
            return right;
        }
        return left;
    }
}

// 代码精简版
class Solution {
    TreeNode pre;
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null || root.val == p.val ||root.val == q.val) return root;
        TreeNode left = lowestCommonAncestor(root.left,p,q);
        TreeNode right = lowestCommonAncestor(root.right,p,q);
        if (left != null && right != null) return root;
        else if (left == null && right != null) return right;
        else if (left != null && right == null) return left;
        else return null;
    }
}
  1. 二叉搜索树最近公共祖先
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root.val > p.val && root.val > q.val)
            return lowestCommonAncestor(root.left, p, q);
        else if(root.val < p.val && root.val < q.val)
            return lowestCommonAncestor(root.right, p, q);
        else 
            return root;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值