leetcode之寻找两个正序数组的中位数(Python)

主要参考:
1.https://leetcode-cn.com/problems/median-of-two-sorted-arrays
2.https://leetcode-cn.com/problems/median-of-two-sorted-arrays/solution/xun-zhao-liang-ge-you-xu-shu-zu-de-zhong-wei-s-114/

问题描述

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。

请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0

示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

二分查找

如果对时间复杂度的要求有log,通常都需要用到二分查找,这道题也可以通过二分查找实现。时间复杂度: O ( l o g ( m + n ) ) O(log(m+n)) O(log(m+n)),空间复杂度: O ( 1 ) O(1) O(1)

思路是将寻找中位数的任务转化为寻找第 k k k个最小值的任务。 k = ( m + n ) / / 2 k = (m + n) // 2 k=(m+n)//2 ( m + n ) / / 2 + 1 (m + n) // 2 + 1 (m+n)//2+1

具体地,1.在两个数组中分别找到 A = n u m s 1 [ k 2 − 1 ] A = nums1[\frac{k}{2}-1] A=nums1[2k1] B = n u m s 2 [ k 2 − 1 ] B = nums2[\frac{k}{2}-1] B=nums2[2k1];

2.因为 n u m s 1 [ 0 ] . . . n u m s 1 [ k 2 − 2 ] nums1[0]...nums1[\frac{k}{2}-2] nums1[0]...nums1[2k2] n u m s 2 [ 0 ] . . . n u m s 2 [ k 2 − 2 ] nums2[0]...nums2[\frac{k}{2}-2] nums2[0]...nums2[2k2]一共 k 2 − 1 + k 2 − 1 = k − 2 \frac{k}{2} - 1 + \frac{k}{2} - 1 = k - 2 2k1+2k1=k2个数,所以min(A, B)最多是第 k − 1 k - 1 k1个最小的数;

3.如果 A A A大于 B B B,那么 n u m s 2 [ 0 ] , . . . , n u m s 2 [ k 2 − 1 ] nums2[0], ..., nums2[\frac{k}{2} - 1] nums2[0],...,nums2[2k1]都不可能是第 k − 1 k - 1 k1最小的数,则删除 n u m s 2 [ 0 ] , . . . , n u m s 2 [ k 2 − 1 ] nums2[0], ..., nums2[\frac{k}{2} - 1] nums2[0],...,nums2[2k1],同时 k k k值也相应减少;

4.同理,如果 B B B大于 A A A,则删除 n u m s 1 [ 0 ] , . . . , n u m s 1 [ k 2 − 1 ] nums1[0], ..., nums1[\frac{k}{2} - 1] nums1[0],...,nums1[2k1],同时 k k k值也相应减少。

class Solution: 
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: 
        def getKthElement(k): 
            """
                - 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
                - 这里的 "/" 表示整除
                - nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
                - nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
                - 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
                - 这样 pivot 本身最大也只能是第 k-1 小的元素
                - 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
                - 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
                - 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
                """ 
            index1, index2 = 0, 0 
            while True: 
                # 特殊情况 
                if index1 == m: 
                    return nums2[index2 + k - 1] 
                if index2 == n: 
                    return nums1[index1 + k - 1] 
                if k == 1: 
                    return min(nums1[index1], nums2[index2]) 
                # 正常情况 
                newIndex1 = min(index1 + k // 2 - 1, m - 1) 
                newIndex2 = min(index2 + k // 2 - 1, n - 1) 
                pivot1, pivot2 = nums1[newIndex1], nums2[newIndex2] 
                if pivot1 <= pivot2: 
                    k -= newIndex1 - index1 + 1 
                    index1 = newIndex1 + 1 
                else: 
                    k -= newIndex2 - index2 + 1 
                    index2 = newIndex2 + 1 
        m, n = len(nums1), len(nums2) 
        totalLength = m + n 
        if totalLength % 2 == 1: 
            return getKthElement((totalLength + 1) // 2) 
        else: 
            return (getKthElement(totalLength // 2) + getKthElement(totalLength // 2 + 1)) / 2

划分数组

这是更高级的思路。就是利用中位数的数学意义:将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。

于是,将 n u m s 1 nums1 nums1 n u m s 2 nums2 nums2分别划分为两部分, n u m s 1 nums1 nums1的左边部分和 n u m s 2 nums2 nums2的左边部分合称为 p a r t A partA partA n u m s 1 nums1 nums1的右边部分和 n u m s 2 nums2 nums2的右边部分合称为 p a r t B partB partB

n u m s 1 nums1 nums1 n u m s 2 nums2 nums2的长度和为偶数时,只需要满足:

  1. l e n ( p a r t A ) = l e n ( p a r t B ) len(partA) = len(partB) len(partA)=len(partB)
  2. m a x ( p a r t A ) ⩽ m i n ( p a r t B ) max(partA) \leqslant min(partB) max(partA)min(partB)
    中位数为 m e d i a n = m a x ( p a r t A ) + m i n ( p a r t B ) 2 median = \frac{max(partA) + min(partB)}{2} median=2max(partA)+min(partB)

n u m s 1 nums1 nums1 n u m s 2 nums2 nums2的长度和为奇数时,只需要满足:

  1. l e n ( p a r t A ) = l e n ( p a r t B ) + 1 len(partA) = len(partB)+1 len(partA)=len(partB)+1
  2. m a x ( p a r t A ) ⩽ m i n ( p a r t B ) max(partA) \leqslant min(partB) max(partA)min(partB)
    中位数为 m e d i a n = m a x ( p a r t A ) median = max(partA) median=max(partA)

n u m s 1 nums1 nums1划分处的索引为 i i i n u m s 2 nums2 nums2划分处的索引为 j j j i i i j j j满足 i + j = m − i + n − j i + j = m - i + n - j i+j=mi+nj(当 m + n m + n m+n为偶数)或 i + j = m − i + n − j + 1 i + j = m - i + n - j + 1 i+j=mi+nj+1(当 m + n m + n m+n为奇数时)。得到 j = m + n + 1 2 − i j = \frac{m + n + 1}{2}- i j=2m+n+1i。注意当 m > n m > n m>n 时,交换 n u m s 1 nums1 nums1 n u m s 2 nums2 nums2

另外,需要满足 n u m s 2 [ j − 1 ] ⩽ n u m s 1 [ i ] nums2[j - 1] \leqslant nums1[i] nums2[j1]nums1[i]以及 n u m s 1 [ i − 1 ] ⩽ n u m s 2 [ j ] nums1[i - 1] \leqslant nums2[j] nums1[i1]nums2[j]。又因为当 i i i 0 ~ m 0~m 0m递增时, n u m s [ i − 1 ] nums[i - 1] nums[i1]递增, B [ j ] B[j] B[j]递减,总存在一个最大的i值满足 n u m s 1 [ i − 1 ] ⩽ n u m s 2 [ j ] nums1[i - 1] \leqslant nums2[j] nums1[i1]nums2[j],此时 n u m s 1 [ i ] > n u m s 2 [ j ] > n u m s 2 [ j − 1 ] nums1[i] > nums2[j] > nums2[j - 1] nums1[i]>nums2[j]>nums2[j1],所以 n u m s 2 [ j − 1 ] ⩽ n u m s 2 [ i ] nums2[j - 1] \leqslant nums2[i] nums2[j1]nums2[i]。综上,只需要满足 n u m s 1 [ i − 1 ] ⩽ n u m s 2 [ j ] nums1[i - 1] \leqslant nums2[j] nums1[i1]nums2[j]即可。

class Solution: 
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: 
        if len(nums1) > len(nums2): 
            return self.findMedianSortedArrays(nums2, nums1) 

        infinty = 2**40 
        m, n = len(nums1), len(nums2) 
        left, right, ansi = 0, m, -1 
        # median1:前一部分的最大值 
        # median2:后一部分的最小值 
        median1, median2 = 0, 0 
        while left <= right: 
            # 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1] 
            # // 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1] 
            i = (left + right) // 2 
            j = (m + n + 1) // 2 - i
            
            # nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j] 
            nums_im1 = (-infinty if i == 0 else nums1[i - 1]) 
            nums_i = (infinty if i == m else nums1[i]) 
            nums_jm1 = (-infinty if j == 0 else nums2[j - 1]) 
            nums_j = (infinty if j == n else nums2[j]) 
            if nums_im1 <= nums_j: 
                ansi = i 
                median1, median2 = max(nums_im1, nums_jm1), min(nums_i, nums_j) 
                left = i + 1 
            else: 
                right = i - 1 
                
        return (median1 + median2) / 2 if (m + n) % 2 == 0 else median1 
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值