推荐系统的公平性
文章平均质量分 94
cqu_shuai
实事求是,不自以为是
展开
-
推荐系统中的偏差与去偏差——综述
参考链接《Bias and Debias in Recommender System: A Survey and Future Directions》概述数据中存在多种多样的偏差,包括但不限于选择偏差(selection bias)、位置偏差(position bias)、曝光偏差(exposure bias)和流行度偏差(popularity bias)。盲目地拟合数据,而忽视这些数据内部的偏差会导致很多问题,比如离线评估和在线指标的差异、伤害用户的对推荐服务的满意度和信任等。要将大量的研究模型原创 2021-04-14 19:35:39 · 5433 阅读 · 1 评论 -
推荐系统公平性之FairMatch--一种基于图的提升推荐系统整体多样性的方法
主要参考论文:《FairMatch A Graph-based Approach for Improving Aggregate Diversity in Recommender Systems》什么是多样性推荐系统中的多样性分为两类:个体多样性(individual diversity)指对于每一个用户而言,推荐结果是否具有多样性;整体多样性(aggregate diversity)指对于整个推荐系统来说,它的推荐结果是否具有多样性。比如是否覆盖了足够多的物品,而不是只集中在小部分流行的物品原创 2020-06-18 19:12:40 · 967 阅读 · 0 评论 -
推荐系统公平性之校准化推荐--calibrated recommendations
主要参考论文:论文1《Calibrated Recommendations》、论文2《Crank up the volume: preference bias amplification in collaborative recommendation》推荐系统中的偏好放大现象(preference bias amplification)你是否有过这样的经历:某天在淘宝搜索了一样东西后,接下了一段时间的推荐都是关于这个物品的,哪怕你已经购买了这个物品或者你只是简单地搜来瞧瞧;在抖音上给某些视频点了赞,后面原创 2020-06-12 12:46:06 · 1990 阅读 · 0 评论 -
推荐系统公平性之组推荐的公平性--fairness in group recommender system
主要参考论文:《Top-N Group Recommendations with Fairness》什么是组推荐(group recommendation)组推荐,顾名思义,就是向一组人推荐物品,而不是传统场景下的对单个人推荐。组的构成分为两种:一是长期型组(persistent group),如一家人;另一种是短期型组(ephemeral group),几个朋友、同事临时组局。虽然感觉平时没有APP有这种组推荐服务,但日常生活中组推荐的应用场景其实挺多。比如一群朋友计划暑假旅游地点、一家人决定看哪原创 2020-05-31 12:36:58 · 2364 阅读 · 0 评论 -
推荐系统公平性之流行度偏差(fairness in recommender systems -- popularity bias)
主要参考论文:《The Unfairness of Popularity Bias in Recommendation》 RMSE@RecSys 2019流行度偏差是什么先定义流行物品和非流行物品。下图是(Movielens 1M)数据集中物品的评分情况。图的横坐标表示不同物品,纵坐标表示物品的评分次数。可以看出只有少部分物品得到了很多的评分,大部分曲线尾部的物品都只有少量的评分,我们也把这部分物品称为长尾物品。在本文中,我们取曲线的前20%对应的物品为流行物品,剩余的为非流行物品(长尾物品)。然原创 2020-05-24 23:44:55 · 4479 阅读 · 2 评论 -
浅谈推荐系统中的公平性--fairness in recommender system
推荐系统中的公平性何谓公平公平,这个词大家经常听到,特别是在小朋友争吵的过程中,“这不公平!”,“明明是他不对!”…日常生活中也存在各种不公平,例如找工作时,有时不看能力只看学历,有的单位也不愿招女员工等等。而公平性之于推荐系统又是什么。在一部分人正焦头烂额地为了推荐性能那百分之零点零几的准确率通宵达旦时,另一部分人决定换个方向,类比已知的存在于机器学习算法中性别偏见、种族歧视等不公平问题,可以探索推荐系统中同样存在这样的不公平问题。这仍是一个比较新的话题,还有很多的坑需要填。如同没有绝对的正义,原创 2020-05-18 13:53:51 · 3429 阅读 · 2 评论