神经网络学习
文章平均质量分 95
beingod0
这个作者很懒,什么都没留下…
展开
-
初探LSTM——异常事件检测
文章参考:Abnormal Event Detection in Videosusing Spatiotemporal AutoencoderLearning Temporal Regularity in Video Sequences数据集1&数据集2本文主要内容阅读相关论文的方法部分的代码实现第一篇马来西亚拉曼大学的研究者发表的,主要内容为:提出了一种基于时域的网...原创 2020-04-27 14:09:40 · 7429 阅读 · 3 评论 -
模型backbone汇总
汇总常用的模型backbone的框架VGG可以参考tf.keras.applications.vgg16darknetdarknet19darknet53Residual NetDenseNet原创 2020-04-21 15:56:19 · 851 阅读 · 0 评论 -
源码阅读之FewshotDetection
博客基于github上的Few-shot Object Detection via Feature Reweighting进行的相关阅读,需要自行查看的可以去提取,原文是“Few-shot Object Detection via Feature Reweighting, ICCV 2019”这边由于项目相关需要用到few shot,进行了相关的论文学习,先行进行记录博主主要需要查看部分...原创 2020-04-05 10:37:19 · 886 阅读 · 6 评论 -
关于Yolov2的loss function二三事
最近因参考看 “Few-shot Object Detection via Feature Reweighting, ICCV 2019”,里面利用到了Yolov2的框架,考虑参考学习下yolov2的损失函数,以便实现论文中的内容YOLOV2位置预测yolov2给予darknet19,从RPN网络借鉴anchor boxes来进行预测边界框和先验框的偏移量。在Faster-RCNN中,边界框...原创 2020-04-03 21:02:37 · 1982 阅读 · 0 评论 -
darknet源码之学习率调整
下面将描述的是基于yolov2.cfg文件,对于学习率的调整方法缩写lr = learning ratebn = batch size主要文件读取cfg配置参数的主要文件为src/parser.cyolov2.cfg中相关部分learning_rate=0.001burn_in=1000max_batches = 500200policy=stepssteps=400000,...原创 2020-04-02 17:29:37 · 1010 阅读 · 1 评论 -
darknet源码阅读之region_layer.c
darknet源码中的region_layer.c文件分析最近在研究yolov2的模型,损失函数真的很头疼,感觉扎进了multi-task objection的原理的坑中,需要从源码进行些分析前提缩写gt = ground truthpred = predictiontx ty tw th : 网络输出的偏移量bx by bw bh : 原图的0~1的中心点和选框长宽文件中函数内容...原创 2020-04-01 23:02:09 · 637 阅读 · 0 评论