初探LSTM——异常事件检测

文章参考:
Abnormal Event Detection in Videos
using Spatiotemporal Autoencoder

Learning Temporal Regularity in Video Sequences

数据集1&数据集2

本文主要内容

阅读相关论文的方法
部分的代码实现

第一篇

马来西亚拉曼大学的研究者发表的,主要内容为:

  • 提出了一种基于时域的网络架构,实现异常检测。
  • 网络结构主要包括两部分:
    • 空间特征的展示
    • 连续时域的空间特征学习

主要贡献的部分

  • 提出了autoencoder去学习数据中的特征
  • 用autoencoder的特征实现网络结构的学习
实现方法

最基础的原则:异常视频的最近帧数会和前面的帧数有较大差别
构建的是点对点端到端的模型,包括空间特征提取和一个时域编解码器,训练时只用正常的视频进行训练,最后通过一个重建阈值进行正常/异常视频的分割

主要操作分为以下三步
预处理

  • 视频的图片 resize 到 227x227大小
  • 像素归一化0~1
  • 每个提取的图像减去全局平均图像(全局平均图是数据集中的所有图的平均)
  • 接着归一化到0均值和一个方差值
  • 输入到模型的图像是视频的10个连续的图像帧,步长是可变化的:
    • 可能步长有1, 2, 3,即123,135,147这样采用视频帧作为输入

特征提取
论文中提取的方法 :
分为了两部分,一部分是空间域的自动编码,另一部分是时域的编解码,用于学习时域信息。

spatial autoencoder 网络结构:
在这里插入图片描述
temporal encoder-decoder model模型:
在这里插入图片描述
这一部分包含三层LSTM卷积层
RNN
接下来简单说明了下RNN,RNN理论上可以学习到一个很长时间序列的信息,但实际上由于梯度消失的原因,RNN很难学到前很多帧的信息。
RNN常见的类似下面的原理

x1
h1
y1
h0
x2
h2
y2

h1=f(Ux1+Wh0+b)
y1=softmax(Vh1+c)
f为激活函数,h0 为0时刻的隐藏层,x1为输入,U,W,b,V,c为模型的参数,y1为输出
由公式可以看出,RNN每一层都有前一层的ht参与,会出现梯度连乘的情况,导致梯度爆炸或梯度消失。
LSTM
LSTM通过一个遗忘门,避免了RNN中会出现的梯度爆炸或消失的情况。
下图是实现LSTM的基本结构网络,还有一个公式说明的方式,这部分需要去细细的品在这里插入图片描述

遗忘门为上图中的ft相关部分,δ为sigmiod函数,ft=sigmoid(Wf[ht-1,xt]+bf),这里经过了ft后,得到一个0~1的矩阵,决定对上一时刻的信息哪些部分进行遗忘操作。
记忆门:
对应下面的公式(2)和(3),这样就有了公式(4),实现了LSTM中主要的 “长Long memory” 主干路
输出门:
这里得到的是隐状态ht,实际上进一步的输出需要对ht做进一步处理。

在这里插入图片描述
而作者正式在上述的基础上,实现了ConvLSTM的,他将上述的输入改为了图像输入,并将卷积替换了部分的⊗

正则化分值
使用了欧氏距离计算输入帧和reconstructed frame之间的距离
在这里插入图片描述
Fw是学习好的权重模型
将上述距离归一化,可以得到Sa(t),得分的情况可以通过计算Sr(t)来获得
在这里插入图片描述
异常检测

异常检测可以分两种模式,一种是通过设定阈值来实现,当分值低于阈值时开始报警。阈值可以通过ROC曲线来查找

另一种方法是通过计数来实现划分,需要有足够计数帧数,才能认定这连续的异常帧是有意义的异常段视频

源码
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import tensorflow.keras.backend as K

from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import ConvLSTM2D, Conv2D, TimeDistributed, BatchNormalization, Conv2DTranspose, LayerNormalization

from os import listdir
from os.path import isfile, join, isdir
from PIL import Image
import numpy as np

def get_clips_by_stride(stride, frames_list, sequence_size):
    """ For data augmenting purposes.
    Parameters
    ----------
    stride : int
        The desired distance between two consecutive frames
    frames_list : list
        A list of sorted frames of shape 256 X 256
    sequence_size: int
        The size of the desired LSTM sequence
    Returns
    -------
    list
        A list of clips , 10 frames each
    """
    # 一个分割器,提取需要的数据,通过frame list支持
    # 这里输入步长和长度可以设置,当设定了 sequence_size为10时 返回的clips每一个长度为10
    clips = []
    sz = len(frames_list)
    clip = np.zeros(shape=(sequence_size, 256, 256, 1))
    cnt = 0
    for start in range(0, stride):
        for i in range(start, sz, stride):
            clip[cnt, :, :, 0] = frames_list[i]
            cnt = cnt + 1
            if cnt == sequence_size:
                clips.append(clip)
                cnt = 0
    return clips


def get_training_set():
    """
    Returns
    -------
    list
        A list of training sequences of shape (NUMBER_OF_SEQUENCES,SINGLE_SEQUENCE_SIZE,FRAME_WIDTH,FRAME_HEIGHT,1)
    """
    # 读取config中数据集的路径,然后提取所有数据准备训练
    clips = []
    # loop over the training folders (Train000,Train001,..)
    for f in sorted(listdir(Config.DATASET_PATH)):
        if isdir(join(Config.DATASET_PATH, f)):
            all_frames = []
            # loop over all the images in the folder (0.tif,1.tif,..,199.tif)
             # 这里已经提前把训练数据给分割为图片了,读取的时候直接是读取的图片
            for c in sorted(listdir(join(Config.DATASET_PATH, f))):
                if str(join(join(Config.DATASET_PATH, f), c))[-3:] == "tif":
                    img = Image.open(join(join(Config.DATASET_PATH, f), c)).resize((256, 256))
                    img = np.array(img, dtype=np.float32) / 256.0
                    all_frames.append(img)
            # get the 10-frames sequences from the list of images after applying data augmentation
            # 这里按照不同的步长,对于不同的视频集进行采样
            for stride in range(1, 3):
                clips.extend(get_clips_by_stride(stride=stride, frames_list=all_frames, sequence_size=10))
    return clips

# 一些配置类的数据
class Config:
  DATASET_PATH ="/content/drive/My Drive/Colab Notebook2/UCSD_Anomaly_Dataset.v1p2/UCSDped1/Train"
  SINGLE_TEST_PATH = "/content/drive/My Drive/Colab Notebook2/UCSD_Anomaly_Dataset.v1p2/UCSDped1/Test/Test032"
  BATCH_SIZE = 4
  EPOCHS = 3
  MODEL_PATH = "/content/drive/My Drive/Colab Notebook2/callback/model_lstm.hdf5"

def get_model(reload_model=True):
    """
        Parameters
        ----------
        reload_model : bool
            Load saved model or retrain it
    """
    # 如果直接加载模型
    if not reload_model:
        return load_model(Config.MODEL_PATH, custom_objects={'LayerNormalization': LayerNormalization})
    # 获取训练数据, 数据格式list[[NUMBER_OF_SEQUENCES, (10, 256, 256,1)], ... ]
    training_set = get_training_set()
    training_set = np.array(training_set)
    training_set = training_set.reshape(-1, 10, 256, 256, 1)
    # 构建模型
    seq = Sequential()
    seq.add(
        TimeDistributed(Conv2D(128, (11, 11), strides=4, padding="same"), batch_input_shape=(None, 10, 256, 256, 1)))
    seq.add(LayerNormalization())
    seq.add(TimeDistributed(Conv2D(64, (5, 5), strides=2, padding="same")))
    seq.add(LayerNormalization())
    # # # # #
    seq.add(ConvLSTM2D(64, (3, 3), padding="same", return_sequences=True))
    seq.add(LayerNormalization())
    seq.add(ConvLSTM2D(32, (3, 3), padding="same", return_sequences=True))
    seq.add(LayerNormalization())
    seq.add(ConvLSTM2D(64, (3, 3), padding="same", return_sequences=True))
    seq.add(LayerNormalization())
    # # # # #
    seq.add(TimeDistributed(Conv2DTranspose(64, (5, 5), strides=2, padding="same")))
    seq.add(LayerNormalization())
    seq.add(TimeDistributed(Conv2DTranspose(128, (11, 11), strides=4, padding="same")))
    seq.add(LayerNormalization())
    seq.add(TimeDistributed(Conv2D(1, (11, 11), activation="sigmoid", padding="same")))
    print(seq.summary())
    seq.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=1e-4, decay=1e-5, epsilon=1e-6))
    # 训练模型
    seq.fit(training_set, training_set,
            batch_size=Config.BATCH_SIZE, epochs=Config.EPOCHS, shuffle=False)
    seq.save(Config.MODEL_PATH)
    return seq


def get_single_test():
    sz = 200
    test = np.zeros(shape=(sz, 256, 256, 1))
    cnt = 0
    for f in sorted(listdir(Config.SINGLE_TEST_PATH)):
        if str(join(Config.SINGLE_TEST_PATH, f))[-3:] == "tif":
            img = Image.open(join(Config.SINGLE_TEST_PATH, f)).resize((256, 256))
            img = np.array(img, dtype=np.float32) / 256.0
            test[cnt, :, :, 0] = img
            cnt = cnt + 1
    return test

import matplotlib.pyplot as plt

def evaluate():
    model = get_model(True)
    print("got model")
    test = get_single_test()
    print(test.shape)
    sz = test.shape[0] - 10
    sequences = np.zeros((sz, 10, 256, 256, 1))
    # apply the sliding window technique to get the sequences
    for i in range(0, sz):
        clip = np.zeros((10, 256, 256, 1))
        for j in range(0, 10):
            clip[j] = test[i + j, :, :, :]
        sequences[i] = clip

    print("got data")
    # get the reconstruction cost of all the sequences
    reconstructed_sequences = model.predict(sequences,batch_size=4)
    sequences_reconstruction_cost = np.array([np.linalg.norm(np.subtract(sequences[i],reconstructed_sequences[i])) for i in range(0,sz)])
    sa = (sequences_reconstruction_cost - np.min(sequences_reconstruction_cost)) / np.max(sequences_reconstruction_cost)
    sr = 1.0 - sa

    # plot the regularity scores
    plt.plot(sr)
    plt.ylabel('regularity score Sr(t)')
    plt.xlabel('frame t')
    plt.show()

if __name__ == "__main__":
    evaluate()

附带一个opencv将视频流转换为tif的代码
import cv2
import os
import shutil

def video2tiff(vid_name, save_dir):
    vid = cv2.VideoCapture(vid_name)

    assert vid.isOpened(), "video not exist"

    count = 0
    if os.path.exists(save_dir):
        shutil.rmtree(save_dir)
    os.makedirs(save_dir)

    while True:
        ret, frame = vid.read()

        if not ret:
            print("end of video")
            break

        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        cv2.imshow("gray image", gray)
        cv2.waitKey(10)

        cv2.imwrite("%s/%d.tif" %(save_dir, count), gray)
        count = count + 1

if __name__ == "__main__":
    video_list = os.listdir("training_videos")
    for video_name in video_list:
        saving_video_tif_path = "train_tif/"+video_name.replace(".avi", "")
        video_name = "training_videos/"+video_name
        video2tiff(video_name, saving_video_tif_path)

    # video2tiff("01.avi", "01")
  • 4
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: LSTM网络(长短期记忆网络)是一种具有记忆能力的循环神经网络,适用于处理具有长期依赖关系的时间序列数据。在异常流量检测中,LSTM网络可以用于预测和识别网络数据流中的异常行为。 LSTM网络通过学习历史数据的模式和规律,能够预测下一个时间步的数据。在异常流量检测中,我们可以将网络流量数据作为输入序列,训练LSTM网络来学习正常流量的模式,并通过对比实际流量数据和LSTM网络预测值之间的差异,检测是否存在异常流量。 具体实现时,我们可以将网络流量数据按时间步切分成多个子序列,并将其作为LSTM网络的输入。然后,我们可以通过训练网络来学习正常流量数据的模式,并得到一个对于每个时间步的预测值。如果实际流量数据与预测值之间的差异超过了设定的阈值,我们就可以判定该时间步的流量数据为异常。 为了提高检测的准确性,我们可以采用多层的LSTM网络,并增加网络的隐藏单元数量。同时,我们还可以利用正则化技术对网络进行训练,以防止过拟合的问题。 总之,LSTM网络在异常流量检测中具有较好的效果,可以通过学习历史数据的模式和规律,来预测和检测网络流量中的异常行为。这种方法可以帮助网络管理员及时发现并解决异常流量问题,保障网络的安全性和稳定性。 ### 回答2: LSTM(长短期记忆)网络是一种循环神经网络(RNN)的变种,可以用于序列数据的建模和预测。针对异常流量检测的问题,可以通过使用LSTM网络来实现。 LSTM网络可以自动学习输入数据的时序特征,并能够处理长期依赖关系。在异常流量检测中,我们可以将流量数据作为输入序列,通过LSTM网络进行训练和预测。 首先,需要收集和准备用于训练的流量数据。通过监控网络流量,收集正常流量和异常流量的数据样本。确保样本包含了各种可能的异常情况,以提高检测的准确性。 接下来,需要对数据进行预处理和特征提取。可以将流量数据按照时间序列切分,并将其转换为适合LSTM网络输入的格式。可以使用滑动窗口的方法,以固定长度的时间窗口作为模型的输入样本。 然后,可以使用LSTM网络对流量数据进行训练。这包括前向传播和反向传播过程,以优化网络参数。可以使用监督学习的方法,将正常流量和异常流量的标签作为训练目标。 训练完成后,可以使用训练好的LSTM模型进行流量检测。将新的流量数据输入到模型中,通过模型的输出判断是否存在异常流量。可以设置一个阈值,当输出超过该阈值时,即认为存在异常。 最后,可以评估模型的性能并进行调优。通过对模型的预测结果与真实标签进行比较,计算准确率、召回率、F1值等评价指标。根据评估结果,可以对模型的参数进行调整和优化,以提高检测的准确性和效率。 综上所述,使用LSTM网络进行异常流量检测可以充分利用流量数据的时序特征,准确地识别异常情况。但是在实际应用中,还需要考虑其他因素,如模型的训练数据、网络结构的设计等,以实现更有效的异常流量检测

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值