逻辑回归学习笔记

逻辑回归

逻辑回归是一个二分类问题,在分类过程值中可以得到代分类样本所属类别的概率。对于输入x和输出预测结果 y={0,1} ,逻辑回归采用sigmoid函数,将实数域的x映射到 [0,1] 区间。sigmoid函数如下所示

h(θx)=11+eθx

则可以得到输入x属于正例和反例的概率,如下
Py=1|x=h(θx)
Py=0|x=1h(θx)

由于模型优化的目标是期望风险最小,由于这里采用的是条件概率模型,换句话说,就是学习一个使训练集出现概率最大的参数 θ ,即使似然函数值最大的参数。从而
对于样本集和未知参数,我们可以得到其似然函数
L(x,y|θ)=ih(θxi)yi(1h(θxi))1yi

两边取对数,可以得到
ln(L(x,y|θ))=iyilog(h(θxi))+(1yi)log(1h(θxi))

这里需要注意的事,这里采用了对数损失函数,虽然sigmoid函数是非线性函数,但是该事件的对数几率为 θx ,即线性函数,(大概)因此逻辑回归是一个线性分类问题。
一般来说,优化问题转化为最小优化问题。从而,我们可以得到逻辑回归的代价函数为
Loss(x,y|θ)=1Ni{yilog(h(θxi))+(1yi)log(1h(θxi))}

为了提高目标函数的泛化能力,避免过拟合(一般来说过拟合是由于预测函数具有高方差导致的——训练集太小、模型过于复杂、噪声干扰),引入正则项进行约束。正则化的目的是选择经验分险和模型复杂度同时小的模型。由于正则项一般是参数的单调递增函数,模型越复杂,正则项越大。添加正则项之后的代价函数为

Loss(x,y|θ)=1Ni{yilog(h(θxi))+(1yi)log(1h(θxi))}+λ||θ||

最小化目标函数,可以采用梯度下降求解。
从而有
θ:=θαLossθ

其中,这里假设正则项为2范数
Lossθ=(yih(θxi))xi+2λθ

逐层迭代可以得到目标函数,即预测函数。

SoftMax
softmax即多项逻辑回归,实现的是二分类到多分类的推广。
假设分类类别为 {1,2,...k,K} ,对于每一个类别,需要单独学习一个参数 θk ,从而预测函数为

P(y=k|x)=eθkx1+eθkx

P(y=K|x)=11+eθkx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值