Total Submit: 4133 Accepted Submit: 2006
Problem
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Example
Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Output
15
Problem Source: Greater New York 2001
http://acm.zju.edu.cn/show_problem.php?pid=1074
using namespace std;
int matrix[ 101 ][ 101 ];
int maxSubSum( int n, int a[] );
int maxSum( int n );
int main()
... {
int n;
while ( cin >> n )
...{
for ( int i = 0; i < n; i++ )
...{
for ( int j = 0; j < n; j++ )
...{
cin >> matrix[i][j];
}
}
cout << maxSum( n ) << endl;
}
return 0;
}
int maxSubSum( int n, int a[] )
... {
int max = -127;
int thisSum = 0;
for ( int i = 0; i < n; i++ )
...{
if ( thisSum > 0 )
thisSum += a[i];
else
thisSum = a[i];
if ( thisSum > max )
max = thisSum;
}
return max;
}
int maxSum( int n )
... {
int b[101];
int sum = 0;
int max = -127;
for ( int i = 0; i < n; i++ )
...{
for ( int k = 0; k < n; k++ ) b[k] = matrix[i][k];
sum = maxSubSum( n, b );
if ( sum > max ) max = sum;
for ( int j = i+1; j < n; j++ )
...{
for ( int k = 0; k < n; k++ ) b[k] += matrix[j][k];
sum = maxSubSum( n, b );
if ( sum > max ) max = sum;
}
}
return max;
}