天平问题 动态规划

天平问题

题目描述

小C为了试验小X,便为物竞的小X出了一道物理相关的题:现在给出n个质量的砝码,问小X能称出多少种质量的物品,可是总有好事者想要破坏,于是乎,n 达到了500,远远超出了小X能够承受的范围,锲而不舍的他决定寻求你们的帮助.

注意:天平有两边,两边均可放砝码。

输入格式

第一行,一个正整数N;

以下N行,每行一个不超过200的正整数,依次表示每个砝码的质量。

输出格式

一行,一个数,表示总共能称出多少种不同质量的物品。

输入样例
3
1
3
9
输出样例
13

解题思路

本题大意:求用这N个砝码可以称出不同质量物品的方案数是多少?
求方案数首选动态规划,我们先来分析一下题目:因为天平的两边都可以放砝码,所以这些砝码可以相加,也可以相减而得到不同的质量。
所以我们不妨将整个问题分成两个部分:砝码相加,砝码相减。
f [ i ] f[i] f[i]表示 i i i是否可以通过砝码的组合得到:


砝码相加

由于一种砝码只有一个,所以如果我们从小的数往大的数动态规划,就会出现同一种砝码累加的错误,我们从大数开始递减动态规划。

for(int j=1;j<=n;j++)
	for(int i=maxn;i>=0;i--)
		if(f[i]>0)
			f[i+a[j]]++;


砝码相减

为了避免同一种砝码多次减去的错误,我们从小到大的动态规划,其它都跟砝码相加一样。

for(int j=1;j<=n;j++)
	for(int i=0;i<=maxn;i++)
		if(f[i]>0&&i-a[j]>0)//防止下标越界
			f[i-a[j]]++;

最后枚举整个 f f f数组,如果 f [ i ] &gt; 0 f[i]&gt;0 f[i]>0,方案数加1。


代码

#include<iostream>

using namespace std;
int n;
int a[505],ans;
int f[50005];

int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
		cin>>a[i];
	f[0]=1;//初始化
	for(int i=1;i<=n;i++)
		for(int j=20000;j>=0;j--)
			if(f[j]>0)
				f[j+a[i]]++;
	for(int i=1;i<=n;i++)
		for(int j=0;j<=20000;j++)
			if(f[j]>0)
				if(j-a[i]>0)
					f[j-a[i]]++;
	for(int i=1;i<=20000;i++)
		if(f[i]>0)
			ans++;
	cout<<ans;
	return 0;
}
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这是一个天平平衡问题,题目给出了一个天平,左右两端共有n个挂钩,有m个不同质量的钩码,需要求出将钩码全部挂到钩子上使天平平衡的方法的总数。 为了解决这个问题,可以设计一个动态规划算法。具体来说,可以定义一个二维数组dp[i][j],其中i表示当前处理的钩码编号,j表示当前天平左侧挂钩的数量减去右侧挂钩的数量。 初始状态为dp[][]=1,表示没有钩码时天平已经平衡。然后,对于每个钩码,可以选择挂在左侧、右侧或不挂,分别对应状态转移方程: dp[i][j] = dp[i-1][j] + dp[i-1][j+1] + dp[i-1][j-1] 其中dp[i-1][j]表示不挂当前钩码,dp[i-1][j+1]表示挂在右侧,dp[i-1][j-1]表示挂在左侧。最终的答案为dp[m][],表示所有钩码都挂上后天平平衡的方案数。 这个算法的时间复杂度为O(mn),空间复杂度也为O(mn)。可以通过优化空间复杂度来进一步提高效率,例如只使用一维数组来存储状态。 ### 回答2: 一、问题分析 题目告知了天平的左右两端共有n个挂钩,且有m个不同质量的钩码。为了让天平平衡,需要将这些钩码全部挂到钩子上。由于钩码的重量不同,挂在不同的挂钩上可能会使得天平失去平衡。因此,需要找出将钩码全部挂到挂钩上使天平平衡的方法的总数。 二、解法探讨 1. 状态定义 对于这个问题,可以考虑使用动态规划的方法进行解决。首先需要定义状态。设f(i,j)为挂了前i个钩码,天平左右两端重量相等的放置方案数。其中i表示当前钩码编号,j表示左半边挂钩子的总重量。 2. 状态转移方程 根据状态定义,可以得到状态转移方程: (1)当第i个钩码被挂在左边,则状态转移为: f(i,j)=f(i-1,j-w[i]) 其中w[i]表示第i个钩码的重量。 (2)当第i个钩码被挂在右边,则状态转移为: f(i,j)=f(i-1,j+w[i]) (3)当第i个钩码不挂在天平上,则状态转移为: f(i,j)=f(i-1,j) 3. 初始状态 (1)f(0,0)=1,表示没有钩码的时候天平已经平衡。 (2)对于任意的j,初始状态为f(0,j)=0,表示没有钩码的时候天平两边的重量不可能相等。 4. 最终结果 最终结果为f(m,sum/2),其中sum表示所有钩码的总重量。因为只有当天平左右两边钩码的总重量相等时,才能使天平平衡。 三、动态规划算法实现 根据上面的思路,可以得到动态规划的算法实现。 算法步骤: 1. 定义一个m×(sum/2+1)的数组dp,dp[i][j]表示挂了前i个钩码,天平左右两端重量相等的放置方案数。 2. 初始化dp数组。对于dp[0][0]=1,dp[0][j]=0。 3. 从1开始遍历所有钩码。对于第i个钩码,从0开始遍历总重量的一半。根据状态转移方程对dp[i][j]进行更新。 4. 最终结果为dp[m][sum/2],表示挂了所有钩码,天平平衡的方案数。 算法部分代码如下: int weight[N],dp[N][M]; int main() { // 输入数据 int n,m,sum=0; scanf("%d %d",&n,&m); for(int i=1;i<=m;i++){ scanf("%d",&weight[i]); sum+=weight[i]; } // 初始化dp数组 for(int i=0;i<=m;i++){ dp[i][0]=1; } for(int i=1;i<=sum/2;i++){ dp[0][i]=0; } // 动态规划转移 for(int i=1;i<=m;i++){ for(int j=0;j<=sum/2;j++){ dp[i][j]=dp[i-1][j]; if(j>=weight[i]){ dp[i][j]+=dp[i-1][j-weight[i]]; } if(j+weight[i]<=sum/2){ dp[i][j]+=dp[i-1][j+weight[i]]; } } } // 输出结果 printf("%d\n",dp[m][sum/2]); return 0; } 四、总结 本题使用动态规划的方法进行求解,可以找出将钩码全部挂到挂钩上使天平平衡的方法的总数。状态定义、状态转移方程、初始状态、最终结果以及算法实现过程都需要合理设计。动态规划可以用于解决多种计数问题,需要灵活运用。 ### 回答3: 天平平衡问题是一个经典的动态规划问题。假设天平左端的钩子数量为a,右端的数量为b,则a+b=n。从m个不同质量的钩码中选择一些放在左端,另一些放在右端,使天平平衡。假设这些钩码的质量分别为w1、w2、……、wm。我们可以用0或1表示某个钩码是否放在左端,用W表示左端钩码总质量减右端钩码总质量,则有W=(w1×x1)+(w2×x2)+……+(wm×xm),其中xi表示第i个钩码放在左端(xi=1)或右端(xi=0)。 显然,当W=0时,天平平衡。所以问题就转化成了求W=0的xi的所有可能性。我们可以定义一个f(i,j)函数,表示前i个钩码放在左端时减去前j个钩码放在右端时的质量差值。这个函数可以用以下公式计算: f(i,j)=max{f(i-1,j),f(i,j-1),f(i-1,j-1)+wi×(xi-xj)} 其中,f(i-1,j)表示第i个钩码放在右端,f(i,j-1)表示第i个钩码放在左端,f(i-1,j-1)+wi×(xi-xj)表示第i个钩码放在左右两端都试过了,取中间值即可。 使用上述公式计算所有可能的f(i,j)值,当f(m,n)=0时,即为一种天平平衡的方案。此时,用回溯法可以得到具体的钩码摆放方案。 算法的时间复杂度为O(mn),空间复杂度为O(mn)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值