- 博客(32)
- 收藏
- 关注
转载 【AI竞技盘点】十月与十一月精彩赛事汇总,切勿错失良机!
一系列融合智慧与科技的竞技场次第展开,它们不仅能够助你精进专业技能、提高设计水准,更有可能让你抱回丰厚的奖金。参赛选手自由集成任何第三方开源或闭源模型进行比赛,利用Coovally的模型训练功能开展模型的训练,并由此来提交训练结果至打分系统。采用调用模型接口的形式进行比赛,大赛组委会针对此类赛题搭建比赛平台,比赛平台自动挂载数据,自动执行模型,在离线环境中进行比赛。现在,让我们逐一揭晓即将在十月和十一月举办的那些引人入胜的AI竞赛,一起感受这场技术与智慧的碰撞!铜牌(20名):各获1万元。
2024-10-15 17:29:21 62
转载 一颗改变视觉AI领域的重磅炸弹——YOLO 11
Ultralytics在2024年YOLO Vision活动上隆重推出全新计算机视觉模型——YOLO 11。YOLO 11于今日正式开源,为广大开发者带来更高效、更精准的视觉识别体验。YOLO 11标志着YOLO系列模型翻开新的篇章,它带来了一系列强大的功能和优化,使其更快,更准确,并且功能多样。
2024-09-30 17:04:27 83
转载 基于YOLOv5s的无人机航拍输电线瓷瓶检测(附数据集与Coovally操作步骤)
Coovally利用先进的机器视觉技术和成熟的解决方案,运用YOLO算法进行模型训练,可以对瓷瓶破损、污染及老化等异常状况快速识别。
2024-09-20 16:31:25 188
转载 基于YOLOv5s的瓶装酒瑕疵检测(附数据集与Coovally操作步骤)
瓶装酒的外观瑕疵,不仅影响消费者的购买决策,更关乎企业的品牌形象。在生产流程中,瓶装酒可能遭遇多种瑕疵,如瓶身的细微划痕、难以察觉的气泡、以及潜在的污点。传统的检测手段,依赖人工肉眼检查,不仅效率不高,且难以避免漏检,这已无法适应现代化生产线的高标准需求。Coovally利用先进的机器视觉技术和成熟的解决方案,运用YOLO算法进行模型训练,帮助厂商从生产线上快速识别瓶身瑕疵并进行标记与剔除。
2024-09-18 17:32:25 100 1
原创 基于YOLOv5s的纸板缺陷检测(附数据集与Coovally操作步骤)
而且当你在上传数据集时,系统自动根据数据集格式,生成另外两种标签格式,如上传COCO格式的数据集,则系统自动生成VOC、YOLO格式的标签;或点击工具按钮进入详情页面,点击转换工具,可进行:VOC<->COCO、 VOC<->YOLO、VOC<->labelme、COCO <-> YOLO、COCO<->labelme(<->:双向转换符)。结合YOLO算法进行纸板缺陷检测,不仅能够在短时间内完成大量纸板的检测任务,并且准确识别出各种缺陷,提高纸板质量合格率,减少人力成本。
2024-06-26 14:57:06 460
原创 基于YOLOv8m的水族馆动物识别(附数据集和Coovally操作步骤)
同时,部分海洋观赏动物具有相似的外观特征,增加了识别的难度。另外,Coovally是一个AI项目开发与应用平台,就是本博文演示部分的展示,从上传数据集到模型预测与下载,快速构建AI解决方案。综上,本博文训练得到的YOLOv8m模型在数据集上表现良好,具有较高的检测精度,可以在实际水族馆动物识别场景中应用。基于现在的水族馆动物识别现状,结合YOLO算法下的目标检测,可以实现对水族馆中各类动物的高效、准确识别,为水族馆动物识别提供了新的解决方案。模型部署:点击模型部署,完成后即可选择模型,上传图片进行预测;
2024-06-24 13:58:00 499
原创 基于YOLOv5s的野火烟雾检测(附数据集与Coovally操作步骤)
近几年火灾频发,随着社会对火灾防控的重视程度不断提高,对野火烟雾预测的需求也日益增加。传统的人工检测通常依赖于巡查人员,其覆盖范围和效率受限于人员数量和体能,难以实现大面积、实时的烟雾检测。基于计算机视觉的野火烟雾预测通过分析图像和视频数据,及早的发现和准确识别监控烟雾情况并发出预警,帮助人们采取相应措施,减少火灾带来的危害。
2024-06-21 10:37:17 179
原创 基于YOLOv5m的地面飞机及油罐的目标识别(附数据集和Coovally操作步骤)
利用无人机拍摄的地面机体进行飞机识别,通过深度挖掘和分析海量的图像数据,能够自动学习并提取出飞机目标的独特特征。想要了解更多关于Coovally的详情,您可以通过微信搜索“Coovally_AI”或关注“跑码地Coovally AI”公众号,获取最新的资讯与动态。经过训练与验证,本博文所呈现的YOLOv5m模型在特定数据集上展现出了良好的性能,检测精度较高,可以在实际应用场景中应用。对于对此模型及其数据集感兴趣的朋友们,欢迎关注并私信我,以获取详细的数据集信息。以及数据详情、实验详情等;
2024-06-20 14:54:18 401
原创 基于YOLOv8m的船舶检测(附数据集和Coovally操作步骤)
船舶检测和识别是一项重要的任务,它涉及到航运安全、港口管理、海洋保护等方面,现在随着人工智能、计算机视觉和机器学习技术的发展,船舶检测和识别已经成为一种可行的技术方案。此数据集共有7000张图片,6种船舶类别,分别是:ore carrier,passenger ship,container ship,bulk cargo carrier,general cargo ship,fishing boat。本博文所展示的YOLOv8m模型在给定数据集上展现出了卓越的性能,检测精度极高,足以满足实际场景中的需求。
2024-06-20 14:49:14 347 2
原创 基于yolov5s的垃圾桶满溢检测 (附数据集与Coovally操作步骤)
在当今城市化高速发展的背景下,随着人口密度的增加和垃圾产生量的急剧攀升,垃圾桶满溢现象日益频繁,给城市环境和居民生活带来了诸多不良影响。混淆矩阵是一个n×n的矩阵,其中n为分类数目,矩阵的每一行代表一个真实类别,每一列代表一个预测类别,矩阵中的每一个元素表示真实类别为行对应的类别,而预测类别为列对应的类别的样本数;此数据集包含3个类别,分别为满溢的垃圾桶,未满溢的垃圾桶和垃圾,一共3349张图片,可用于检测垃圾桶是否满溢,也可以用于检测垃圾、垃圾箱等任务。若想增加数据,还可以点击增强算法,进行图像增强;
2024-06-20 14:43:33 529
原创 Coovally模型探索:高效下载并使用Hugging Face Transformers预训练模型
这些模型被广泛应用于各种任务,如文本分类、命名实体识别、问答、文本生成等。Transformers库易于使用,可方便地集成到现有的深度学习框架,如PyTorch和TensorFlow,让研究人员和开发者更容易下载和应用NLP预训练模型,如BERT、GPT-2、XLNet等,降低使用门槛。新建极速任务,选择任务类型后,点击上传模型,选择在线下载,粘贴下载链接与模型名称,模型下载完成后并上传/选择数据集即可创建任务。以Hugging Face为例,在其网站选择模型类型,复制模型名称。
2023-09-28 18:00:00 236
原创 Coovally模型探索:快速获取并应用MMDetection模型
Coovally平台的“模型探索”功能已正式上线,我们诚挚欢迎更多AI研究者加入测试,亲身体验Coovally提供的模型获取和应用功能。同时,Coovally平台更推出了本地化安装版本,以更加灵活的方式部署于用户环境,满足个性化需求。进入模型探索页面,新建极速任务中选择任务类型后,点击上传模型,选择在线下载,粘贴下载链接与模型名称,模型下载完成后并上传/选择数据集即可创建任务;在Coovally的模型探索页面,用户只需搜索并选择需要的。,平台即可自动完成模型的下载和集成。网站中选择模型类型,复制模型名称;
2023-09-25 16:57:03 199
原创 Coovally模型探索:一键下载Hugging Face预训练模型并集成应用
Coovally是一个包含完整AI建模流程、AI项目管理及AI系统部署管理的机器学习平台,可提供数据预处理、智能标注、分布式模型训练、多维度模型评估、一键式模型部署服务。新建极速任务,选择任务类型后,点击上传模型,选择在线下载,粘贴下载链接与模型名称,模型下载完成后并上传/选择数据集即可创建任务。在模型创建中,系统支持用户上传本地模型文件创建模型,同时也支持用户一键下载和部署。以Hugging Face为例,在其网站选择模型类型,复制模型名称;等不同类型数据的深度学习和应用,快速实现机器学习。
2023-09-12 14:37:10 257
原创 Coovally视觉智能分析与应用系统全面升级 更多新功能等你来!
Coovally视觉智能分析与应用系统是一款智能视频分析解决方案的设计与运行平台,系统在保持了原有架构的同时增加了海量新功能,在操作便利性和易用性方面进行了显著提升;同时,还可以将在Coovally训练好的模型或内置的模型一键部署到系统中,真正实现了快速与便捷,使AI应用开发的门槛进一步降低。
2023-06-26 15:35:36 178
原创 Coovally再升级!基于CV大模型的智能标注解放你的双手
Coovally智能标注技术利用预训练的CV大模型自动生成训练数据,实现了“机器标注”,大幅提高了效率并降低了成本。数据是AI的燃料,数据标注则是训练深度学习模型不可或缺的组成部分。通过基于CV大模型的智能标注技术,可以高效准确地自动生成训练数据,极大地缩短模型迭代周期,为AI的广泛应用夯实数据基础。
2023-04-20 15:29:14 296
原创 Coovally浏览器插件 深度学习装机必备
能够提供“打包自身的A I能力”,给业务人员使用,可实现“授人以渔”。如上图所示,搜索相关模型名称后,Coovally插件会帮助自动识别相关模型名称并进行标注,点击便能直接跳转至Coovally平台,进行相关任务的创建。“得数据者,得人工智能”,有了浏览器插件功能的加持,Coovally将进一步拓宽应用场景,提高使用灵活度,助力深度学习研究的进一步发展。下载Coovally插件即可在浏览器内的任何网页捕捉到已内置在Coovally中的深度学习模型,并一键链接至模型训练界面,快速验证感兴趣的模型。
2023-04-12 13:50:31 156
原创 百亿、千亿级参数的基础模型之后,我们正在步入以数据为中心的时代?
在目前这样以数据为中心的时代里,机器视觉领域也在逐步更新迭代。跑码地Coovally就是一个典型以数据为中心的机器视觉平台,Coovally是一个包含完整AI建模流程、AI项目管理及AI系统部署管理的机器视觉平台,能够帮助用户快速批量验证多种机器学习和深度学习模型的性能,极大的降低AI模型工程化应用门槛;能够提供“打包自身的A I能力”,给业务人员使用,可实现“授人以渔”。
2023-01-17 14:13:16 176
原创 论文研究 | 基于图像处理技术的零件孔位尺寸快速测量方法
本文提出一种可以借助智能手机完成识别的零件孔位尺寸快速检测方法,以期以较低的使用成本为现场测量工作提供一种补充手段,并为零件视觉测量提供一种可供借鉴的思路和方法。
2023-01-04 15:03:25 1631
原创 AI工程师认证,看这一篇就够了
人工智能行业近几年发展迅速,从业人员也越来越多,能力的标准也越来越需要相关证书或认证来进行区分。目前中国关于人工智能的认证大致可以分为三类,一类是职称的评审认证;第二类是权威机构颁发的证书认证;第三类是大型企业的认证。
2022-12-30 09:55:57 14674
原创 论文研究 | 基于视觉的汽车线束绑扎胶套检测与测量系统
针对汽车线束绑扎胶套的检测及测量过程中人工主观影响大、效率低等问题,设计了一种基于机器视觉和深度学习的胶套检测与测量系统。
2022-12-29 14:33:18 514
原创 浅谈汽车轮胎匹配视觉防错检测应用
视觉检测系统可以代替人工完成条码字符、裂痕、包装、表面图层是否完整、凹陷等检测,能有效的提高生产流水线的检测速度和精度,大大提高产量和质量,降低人工成本,同时防止因为人眼疲劳而产生的误判。
2022-12-28 16:22:22 1429
原创 论文研究 | 基于机器视觉的汽车精密零件表面缺陷自动检测方法
首先构建汽车精密零件表面缺陷的机器视觉图像采集模型,然后在切削载荷作用下,采用疲劳裂纹的视觉特征重构方法实现对汽车精密零件表面缺陷自动检测,最后进行仿真测试,展示了本方法在提高汽车精密零件表面缺陷自动检测能力方面优越性能。
2022-12-16 15:18:03 923
原创 论文研究 | 多车道线检测和分类算法—基于滤波图像,多个约束因子,叠加角度直方图和截距约束等
本文首先对图像进行裁剪有效检测区域、Gamma校正和像素值增强等预处理,目的在于突出梯度的同时保证多车道线信息不丢失;然后基于多相位 Gabor 滤波器进行滤波叠加合成 Gabor 滤波叠加图,留下与车道线相关的纹理信息;接着使用多变量因子的 Hough 变换算法将车道线转化为多条直线段,减少无关干扰;最后基于叠加直方图和双截距约束的方法实现快速分类。通过少量关键点完成拟合。
2022-12-13 15:11:17 840
原创 论文研究 | 基于 MPL 分类器的零件识别
本文从实际需求出发提出了基于 MPL 分类器的零件识别方法。 通过提取 3C 组件的圆度来训练 MPL 分类器模型,使用训练完成的 MPL 分类器模型实现 3C 组件的自动分类。 通过改变形状特征可以实现更多不同零件的识别检测。
2022-12-06 16:31:46 657
原创 图像分割方法分享 | 基于优选集成ConvNet的脑癌图像分割方法
基于对脑癌患者的诊断与治疗的重要性,提出一种优选集成卷积神经网络方法以对多模态的脑肿瘤图像进行有效而精准的分割。具体来说,根据所使用的2个子卷积神经网络的不同特点及其表现,将它们分别用于不同脑肿瘤模态数据的图像分割处理。此外,为了进一步提升分割的有效性,对原始网络进行了一些结构与超参数方面的优化。与脑肿瘤分割比赛中的优秀结果以及其他优秀的脑肿瘤图像分割方法进行比较,验证结果显示,笔者提出的优选集成卷积神经网络方法进行了脑肿瘤的高度精确分割。
2022-12-01 17:47:24 741
原创 论文研究 | 图像分割中数据标注方法
随着人工智能领域的探索不断深入,高铁和城市交通逐渐走向智能化,越来越多的图像识别算法应用在辅助导航、自动驾驶上。在实际场景中,高铁在行驶过程中会面临一些极端情况,例如泥石流灾害、轨道脱轨等,对于这些极端情况通常采用图像识别的方式进行判断 。目前针对物体轮廓标注多边形的方式存在更为明显的效率低下问题,人工标注成本过高。为控制数据标注成本,提高人工标注物体轮廓效率是最直接有效的方法,设计实现一个高效率的数据标注工具十分关键。
2022-11-30 14:48:58 2833
原创 论文研究 | 快速自动模糊 C-均值聚类彩色图像分割算法
图像分割是计算机视觉和图像理解中最重要的研究课题之一,该论文提出了一种快速自动的 FCM 彩色图像分割算法,所提算法的计算复杂度较低、运行时间较少、分割精度较高。
2022-11-29 16:02:49 1384
原创 论文研究 | 基于机器视觉的钢材表面缺陷检测
钢材是发展现代工业技术的基本材料,随着工业制造能力的提升,钢材广泛应用于建筑行业、海洋工程、航天工程,对钢材也提出了更严苛的要求。然而由于生产工艺限制,钢材在生产过程中不可避免地存在深度各异的表面缺陷,如划痕、裂纹、凹面等。这些缺陷不仅会影响产品外观,同时会导致钢材耐磨性、韧性等性能下降,缩短钢材的使用寿命。因此,分析与掌握如何提高钢材表面质量是现代钢材生产厂家亟需解决的重要问题。
2022-11-25 16:36:08 2558
原创 论文研究 | 基于机器视觉的 PCB 缺陷检测算法研究现状及展望
印刷电路板(PCB)是电子零件的基板,需求量极大,承载着电路元件和导线的布局,其优良与否对电子产品的质量有着重要影响。本篇论文从传统图像处理方式、传统机器学习及深度学习3大维度全面回顾了近 10 年基于机器视觉的PCB 缺陷检测算法。
2022-11-24 17:17:52 8864
原创 论文研究 | 机器视觉下的普通国省干线公路落物识别
分享一篇机器视觉检测技术在公路落物识别中的应用文章,论文发表在《数字技术与应用》,介绍了机器视觉对普通国省干线公路落物识别的算法设计,对主要内容作了摘抄和整理,分享给大家~
2022-11-23 15:21:50 1093
原创 机器视觉检测技术在汽车行业中的应用
分享一篇机器视觉检测技术在汽车行业中的应用文章,论文发表在《电子测试》,介绍了机器视觉对汽车零部件平面度检测的设计,对主要内容作了摘抄和整理,分享给大家~
2022-11-22 15:22:53 1317
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人