图像分割方法分享 | 基于优选集成ConvNet的脑癌图像分割方法

本文介绍了一种基于优选集成的深度学习方法,用于脑癌图像分割。该方法结合了3D ConvNet和3D U-Net的子网络,通过"优选集成"策略提高分割精度。每个子网络针对不同的肿瘤子区域进行训练,通过 dice 和 focal 损失函数进行优化。实验结果表明,这种方法在MBTSC-2019数据集上获得了较高的分割精度,尤其在肿瘤核心和整肿瘤的分割上表现突出。
摘要由CSDN通过智能技术生成

前言

略。

1 方 法

使用单个的神经网络进行图像分割的效果通常精度较低达不到预期,因此笔者对深度神经网络进行优选集成以适应脑肿瘤分割的任务.具体来说,提出了由2个网络组成的轻量级集成方法,每个网络都有选择地在训练集上进行训练.这些网络的输出是在分割肿瘤子区域方面有所不同的分割图,最后将分割图组合起来得到最终的预测.这2个网络的训练细节如下.

1.1 子网络1:3维-ConvNet

集成中使用的第1个子模型是3维-ConvNet。它使用具有加权空洞卷积的多纤维单元进行多尺度表征以用于3维体积分割,如图1所示.另外,对该网络进行微调,以改善分割效果。

 在将数据输入网络进行训练之前,使用多种数据扩充技术如裁剪、旋转、镜像等对数据进行增强.使用块大小为128×128,并结合了dice损失和focal损失函数在150个epochs上训练模型.微调的超参数如表1所示。

 

MRI数据应用零填充,使得原始240×240×155大小的体素被转换为240×240×160,即正好可以被网络整除的深度.一旦准备好数据进行验证,就通过训练好的网络来生成概率图.随后使用这些概率图进行集成以预测最终的结果.

1.2 子网络2:3维-UConvNet

集成的第2个子模型是与经典U型-ConvNet体系结构不同的3维U-Net变体,与之不同的是其中的ReLU激活函数被Leaky-ReLU所取代,并使用实例归一化(instancenormalization,简称IN)以 代替批量归一化(batchnormalization,简称BN).使用其在 MBTSC-2019数据集上从零开始训练,如图2所示,其中紫 框 表 示 3 维 卷 积 单 元,红 线 表 示 最 大 池 化 操 作,蓝 线 表 示 3 线 性 上 采 样 (trilinearupsampling)操作且橘线表示合并操作.同样对该网络进行微调以改善分割效果.

 通过裁 剪 数 据 来 减 少 MRI大 小.然后通过其他异构数据的中值体素空间重新采样,随 后 进 行z-score归一化.为了训练网络,使用输入块大小为128×128×128的体素且批量大小为2.在学习时对数据应用不同的图像增强技术如旋转、镜像反转和伽马校正以避免过拟合,从而提高模型的分割精度.使用的损失函数结合了交叉熵损失函数与dice损失函数.表2详细说明了训练过程中的超参数.

 基于图像块进行验证,其中所有的图像块重叠一半的大小,并且中心附近的体素有一个更高的权重被分配于它们.在测试期间,沿着图像轴进行镜像反转获得了额外的增强数据.3维-U 型 ConvNet的输出也是用于集成的概率图.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值