python:支持向量机 分类模型

支持向量机 分类模型 iris_svm.py 

# coding=utf-8
from sklearn import datasets
from sklearn.metrics import confusion_matrix,accuracy_score
from sklearn.model_selection import train_test_split
from sklearn import preprocessing

# 加载鸢尾花数据集
iris_X,iris_y = datasets.load_iris(return_X_y=True)
# 数据预处理:按列归一化
iris_X = preprocessing.scale(iris_X)
# 切分数据集:测试集 30%
iris_X_train,iris_X_test,iris_y_train,iris_y_test = train_test_split(iris_X,iris_y,test_size=0.3,random_state=0)
# 支持向量机 分类模型
from sklearn import svm
model = svm.SVC(decision_function_shape='ovo',gamma=0.1)
# 模型训练
model.fit(iris_X_train,iris_y_train)
# 模型预测
iris_y_pred = model.predict(iris_X_test)
# 模型评估
# 混淆矩阵
print(confusion_matrix(iris_y_test,iris_y_pred))
print("准确率: %.3f" % accuracy_score(iris_y_test,iris_y_pred))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值