【程序员数学:用Python学透线性代数和微积分】
中文目录
第1章 通过代码学数学 1
1.1 使用数学和软件解决商业问题 2
1.1.1 预测金融市场走势 2
1.1.2 寻找优质交易 4
1.1.3 构建三维图形和动画 6
1.1.4 对物理世界建模 8
1.2 如何高效学习数学 9
1.2.1 Jane想学习数学 9
1.2.2 在数学课本中苦苦挣扎 10
1.3 用上你训练有素的左脑 11
1.3.1 使用正式的语言 11
1.3.2 构建你自己的计算器 12
1.3.3 用函数建立抽象概念 13
1.4 小结 14
第一部分 向量和图形
第2章 二维向量绘图 16
2.1 二维向量绘图 16
2.1.1 如何表示二维向量 18
2.1.2 用Python绘制二维图形 20
2.1.3 练习 23
2.2 平面向量运算 25
2.2.1 向量的分量和长度 28
2.2.2 向量与数相乘 29
2.2.3 减法、位移和距离 31
2.2.4 练习 34
2.3 平面上的角度和三角学 41
2.3.1 从角度到分量 42
2.3.2 Python中的三角学和弧度 46
2.3.3 从分量到角度 47
2.3.4 练习 50
2.4 向量集合的变换 57
2.4.1 组合向量变换 59
2.4.2 练习 60
2.5 用Matplotlib绘图 61
2.6 小结 62
第3章 上升到三维世界 63
3.1 在三维空间中绘制向量 64
3.1.1 用坐标表示三维向量 66
3.1.2 用Python进行三维绘图 66
3.1.3 练习 68
3.2 三维空间中的向量运算 70
3.2.1 添加三维向量 70
3.2.2 三维空间中的标量乘法 72
3.2.3 三维向量减法 72
3.2.4 计算长度和距离 73
3.2.5 计算角度和方向 74
3.2.6 练习 75
3.3 点积:测量向量对齐 78
3.3.1 绘制点积 78
3.3.2 计算点积 80
3.3.3 点积的示例 82
3.3.4 用点积测量角度 83
3.3.5 练习 85
3.4 向量积:测量定向区域 88
3.4.1 在三维空间中确定自己的朝向 88
3.4.2 找到向量积的方向 89
3.4.3 求向量积的长度 91
3.4.4 计算三维向量的向量积 92
3.4.5 练习 93
3.5 在二维平面上渲染三维对象 96
3.5.1 使用向量定义三维对象 97
3.5.2 二维投影 98
3.5.3 确定面的朝向和阴影 99
3.5.4 练习 101
3.6 小结 102
第4章 变换向量和图形 103
4.1 变换三维对象 105
4.1.1 绘制变换后的对象 105
4.1.2 组合向量变换 107
4.1.3 绕轴旋转对象 110
4.1.4 创造属于你自己的几何变换 113
4.2 线性变换 117
4.2.1 向量运算的不变性 117
4.2.2 图解线性变换 119
4.2.3 为什么要做线性变换 121
4.
程序员数学:用Python学透线性代数和微积分 中文目录
于 2024-10-20 15:59:45 首次发布