python:sklearn 主成分分析(PCA)

参考书:《统计学习方法》第2版 第16章 主成分分析(PCA)示例

编写 test_pca_1.py  如下

# -*- coding: utf-8 -*-
""" 主成分分析(PCA) """
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 初始化 PCA
pca = PCA(n_components=2)

# 降维
X_pca = pca.fit_transform(X)

print("解释方差比例:", pca.explained_variance_ratio_)

# 可视化
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()

Anaconda 3
运行 python test_pca_1.py 
解释方差比例: [0.92461872 0.05306648]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值