python:RSI 指标,超买 overbuy, 超卖 oversold

该Python脚本利用tushare获取股票数据,通过talib库计算6日和14日RSI指标,判断超买和超卖情况,并绘制收盘价和RSI曲线图。脚本还包含了对RSI超过80和低于20时的标记功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RSI 为1978年美国作者Welles Wilder JR.在著作(New Concepts in Technical Trading Systems)中所提出的交易方法之一,所谓RSI英文全名为(Relative Strenth Index)中文名称为相当强弱指标。RSI的基本原理是在一个正常的股市中,多空买卖双方的力道必须取得均衡,股价才能稳定;而RSI是对于固定期间内,股价上涨总幅度平均指占总幅度平均值的比例。

    买卖原则:
    1. RSI值于0-100之间呈常态分配,
    2. 当6日RSI值在80%以上时,股市呈超买现象,若出现M头,为卖出时机。
    3. 当6日RSI值在20%以下时,股市呈超卖现象,若出现W底为买进时机。
    4. RSI一般选用6天;12天,24天作为参考基期,基期越长越有趋势性-慢速RSI,基期越短越有敏感性-快速RSI,
    5. 当快速RSI由下往上突破慢速RSI时,为买进时机;当快速RSI由上往下跌破慢速RSI时,为卖出时机

talib_rsi.py 

# -*- coding: utf-8 -*-
import os, sys
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import talib

if len(sys.argv) ==2:
    code = sys.argv[1]
else:
    print('usage: python talib_rsi.py stockcode ')
    sys.exit(1)

if len(code) !=6:
    print('stock code length: 6')
    sys.exit(2)

df = ts.get_k_data(code)
if df.empty ==True:
    print(" df is empty ")
    sys.exit(2)

df = df[ df['date'] > '2022-12-01']
if len(df) <15:
    print(" len(df) <15 ")
    sys.exit(2)

# 求ma7日均线
df['ma7'] = df['close'].rolling(window=7).mean()
df.index = pd.to_datetime(df.date)

# RSI:相对强弱指标
df['rsi_6'] = talib.RSI(df.close, timeperiod=6)
df['rsi14'] = talib.RSI(df.close, timeperiod=14)
print("rsi_6={0:.1f} , rsi14={1:.1f}".format(df['rsi_6'][-1], df['rsi14'][-1]))
#print(df[ df['rsi_6'] > 80])
#print(df[ df['rsi_6'] < 20])

# RSI 超买 overbuy , 超卖 oversold
rsi_overbuy = df['rsi_6'] > 80
rsi_oversold= df['rsi_6'] < 20
df.loc[rsi_overbuy[(rsi_overbuy==True)&(rsi_overbuy.shift()==False)].index, 'overBuy']='oB'
df.loc[rsi_oversold[(rsi_oversold==True)&(rsi_oversold.shift()==False)].index, 'overSold']='oS'
print(df[ df['overBuy']=='oB'])
print(df[ df['overSold']=='oS'])

df = df[ df['date'] > '2023-01-01']
#print(df.head())
# 画股票收盘价图
fig,axes = plt.subplots(2,1)
df[['close', 'ma7']].plot(ax=axes[0], grid=True, title=code)
# 画 RSI 曲线图
df[['rsi_6', 'rsi14']].plot(ax=axes[1], grid=True)
plt.legend(loc='best', shadow=True)
plt.show()
df.to_csv(f"/stock/rsi_{code}.csv")

运行 python talib_rsi.py 6位股票代码

代码报错:C:\Users\28729\AppData\Local\Temp\ipykernel_2060\857681138.py:10: FutureWarning: Automatic reindexing on DataFrame vs Series comparisons is deprecated and will raise ValueError in a future version. Do `left, right = left.align(right, axis=1, copy=False)` before e.g. `left == right` df['MA_Signal'] = np.where(df['Close'] > df[f'MA_{ma_window}'], 1, -1)原始代码:def generate_signals(df, ma_window=50, rsi_oversold=30, rsi_overbought=70): """ 生成MA-RSI交易信号 ma_window: 使用的MA周期 rsi_oversold/overbought: RSI阈值 """ df = df.copy() # 趋势信号 df['MA_Signal'] = np.where(df['Close'] > df[f'MA_{ma_window}'], 1, -1) # RSI动量信号 df['RSI_Signal'] = 0 # RSI区反弹 (连续两日低于阈值后回升) df.loc[(df['RSI'].shift(1) < rsi_oversold) & (df['RSI'] > rsi_oversold), 'RSI_Signal'] = 1 # RSI超买区回落 df.loc[(df['RSI'].shift(1) > rsi_overbought) & (df['RSI'] < rsi_overbought), 'RSI_Signal'] = -1 # 综合信号生成 df['Signal'] = 0 # 买入条件:趋势向上且RSI反弹 df.loc[(df['MA_Signal'] == 1) & (df['RSI_Signal'] == 1), 'Signal'] = 1 # 出条件:趋势向下或RSI回落 df.loc[(df['MA_Signal'] == -1) | (df['RSI_Signal'] == -1), 'Signal'] = -1 return df strategy_data = generate_signals(aapl_data) strategy_data.head() def generate_signals(df, ma_window=50, rsi_oversold=30, rsi_overbought=70): """ 生成MA-RSI交易信号 ma_window: 使用的MA周期 rsi_oversold/overbought: RSI阈值 """ df = df.copy() # 趋势信号 df['MA_Signal'] = np.where(df['Close'] > df[f'MA_{ma_window}'], 1, -1) # RSI动量信号 df['RSI_Signal'] = 0 # RSI区反弹 (连续两日低于阈值后回升) df.loc[(df['RSI'].shift(1) < rsi_oversold) & (df['RSI'] > rsi_oversold), 'RSI_Signal'] = 1 # RSI超买区回落 df.loc[(df['RSI'].shift(1) > rsi_overbought) & (df['RSI'] < rsi_overbought), 'RSI_Signal'] = -1 # 综合信号生成 df['Signal'] = 0 # 买入条件:趋势向上且RSI反弹 df.loc[(df['MA_Signal'] == 1) & (df['RSI_Signal'] == 1), 'Signal'] = 1 # 出条件:趋势向下或RSI回落 df.loc[(df['MA_Signal'] == -1) | (df['RSI_Signal'] == -1), 'Signal'] = -1 return df strategy_data = generate_signals(aapl_data) strategy_data.head() ,已知数据中前五十行有缺失值
03-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值