深度学习
文章平均质量分 69
Mirinda_cjy
一个人不可能参与世间所有的热闹,正如一个人不能奢求掌握所有的技术。
做自己擅长的,感受最热闹。
展开
-
pip install xxx, UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte.....illegal multibyte sequence
打开文件时,没有指定编码格式,encoding = None,故报错,需要指定编码格式原创 2022-09-06 15:42:41 · 1286 阅读 · 0 评论 -
yolov5-5.0转换ncnn在安卓平台的应用
yolov5-5.0转换ncnn在安卓上应用1、NCNN编译2、pt转onnx3、onnx转ncnn4、安卓端部署5、问题及解决本文的编译应用环境及用到的编译工具为Win10、pycharm、VS2015、Android Studio.1、NCNN编译腾讯官方的介绍:ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端原创 2022-03-17 17:31:09 · 5302 阅读 · 3 评论 -
onnxruntime-gpu使用问题
使用onnx+GPU推理yolov4/v5模型的时候报错:warnings.warn(“Cannot load onnxruntime.capi. Error: ‘{0}’”.format(str(e)))Traceback (most recent call last):File “D:\Program\pyDev\Anaconda\envs\pytorch\lib\site-packages\onnxruntime_init_.py”, line 12, in from onnxruntime.原创 2022-01-13 16:13:19 · 5950 阅读 · 2 评论 -
Ubuntu18.04安装CUDA11.1+cudnn8.0.5+TensorRT7.2
安装过程趟了很多坑,记录一下。硬件:Tesla T4系统:Ubuntu18.04 华为服务器目标:安装cuda11.1+cudnn8.01、驱动安装ubuntu-driver devices 查看合适的驱动sudo apt install nvidia-driver-450-server驱动安装成功!2、安装cuda离线下载CUDA11.1.0参考:https://cyfeng.science/2020/05/02/ubuntu-install-nvidia-driver-cu原创 2021-04-21 11:13:17 · 5350 阅读 · 0 评论 -
Yolo-v4 训练过程中Segmentation fault (core dumped)出错原因分析
训练Yolo-v4过程中总是失败,报错“Segmentation fault (core dumped)”根据网上的提示原因无外乎有三:(1)内存爆;(2)出现野指针;(3)数据本身的问题;比较纠结的在Windows上可以正常训练,但在Ubuntu上总出问题。我用的显卡是RTX2080ti,根据nvidia-smi显示显卡才用了60%左右;数据已经核验了一遍,没有标记空框的情况!用gdb调试后,有了重大发现!居然读图失败!之后出现地址访问不到的问题!按照提示的图片查看数据,发现该图片的后缀原创 2020-07-21 10:06:16 · 3468 阅读 · 0 评论 -
YOLO-v4网络结构解析
转自:https://blog.csdn.net/weixin_41560402/article/details/1061197741. 概述现阶段的目标检测器主要由4部分组成:Input、Backbone、Neck、Head。YOLOv4模型由以下部分组成:CSPDarknet53作为骨干网络BackBone;SPP作为Neck的附加模块,PANet作为Neck的特征融合模块;YOLOv3作为Head。2. 网络分块解析2.0 先睹为快我们可以使用模型结构可视化工具Netron转载 2020-07-20 10:01:12 · 3718 阅读 · 2 评论 -
(转)正则化方法在深度学习中的应用
深度学习中,卷积神经网络和循环神经网络等深度模型在各种复杂的任务中表现十分优秀。例如卷积神经网络(CNN)这种由生物启发而诞生的网络,它基于数学的卷积运算而能检测大量的图像特征,因此可用于解决多种图像视觉应用、目标分类和语音识别等问题。但是,深层网络架构的学习要求大量数据,对计算能力的要求很高。神经元和...转载 2020-06-04 16:19:19 · 1392 阅读 · 0 评论 -
faster_rcnn_inception_v2_coco.config的解析
参考:https://blog.csdn.net/wubingwei12/article/details/88184140model { faster_rcnn { num_classes: 3 //获取要识别的类数 image_resizer { keep_aspect_ratio_resizer { min_dimension: 128 //最小的图片像素 max_dimension: 1024 //最大的图片像素 }原创 2020-05-16 11:38:27 · 2089 阅读 · 0 评论 -
卷积滤波核的设计
转载自:https://blog.csdn.net/xue_csdn/article/details/99077718参考:https://www.cnblogs.com/zongfa/p/9130167.html卷积核就是一个二维mxm矩阵。二维图像与二维矩阵卷积之后的结果,就实现了对图像的滤波。卷积核一般有以下一些规则:m的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7...转载 2020-03-31 16:20:02 · 3239 阅读 · 1 评论 -
基于caffe框架遇到的特殊层
转自:https://blog.csdn.net/xg123321123/article/details/52610919Batch Normalization意义: 网络训练时,用来加速收敛速度提醒: 已经将BN集成为一个layer了,使用时需要和scale层一起使用训练的时候,将BN层的use_global_stats设置为false; 测试的时候将use_global_sta...转载 2019-07-19 10:19:28 · 200 阅读 · 0 评论 -
目标检测算法总结(R-CNN、Fast R-CNN、Faster R-CNN、FPN、YOLO、SSD、RetinaNet)
转自:https://www.cnblogs.com/guoyaohua/p/8994246.html目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息。本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括Fast R-CNN、Faster R-CNN 和 FPN等。第二部分则重点讨论了包括YOLO、...转载 2019-07-16 10:46:02 · 1968 阅读 · 0 评论 -
解读RetinaNet
转自:https://blog.csdn.net/JNingWei/article/details/80038594众所周知,detector主要分为以下两大门派: - one stage系 two stage系 代表性算法 YOLOv1、SSD、YOLOv2、YOLOv3 R-CNN、SPPNet、Fast R-CNN、Faster R-CNN 检...转载 2019-07-18 14:04:29 · 4468 阅读 · 0 评论