积累
文章平均质量分 86
Mirinda_cjy
一个人不可能参与世间所有的热闹,正如一个人不能奢求掌握所有的技术。
做自己擅长的,感受最热闹。
展开
-
欠拟合与过拟合的概念
在训练模型的过程中,我们通常希望达到以下两个目的:1、训练的损失值尽可能地小。2、训练的损失值与测试的损失值之间的差距尽可能地小。当第一个目的没有达到时,则说明模型没有训练出很好的效果,模型对于判别数据的模式或特征的能力不强,则认为它是欠拟合的。当第一个目的达到,第二个没有达到时,说明模型训练出了很好的效果,而测试的损失值比较大,则说明模型在新的数据上的表现很差,此时可认为模型过度拟合训练的数据,而对于未参与训练的数据不具备很好的判别或拟合能力,这种情况下,模型是过拟合的。用一个通俗的例子来说明:转载 2021-06-15 09:08:23 · 2344 阅读 · 1 评论 -
(转)Deep_sort代码分析
写的太好了,情不自禁转载了转自:https://blog.csdn.net/sgfmby1994/article/details/98517210 重新排版太烦了,word写完直接截图过来了.....转载 2020-06-17 17:34:17 · 425 阅读 · 0 评论 -
卡尔曼滤波的解释
转自:https://www.jianshu.com/p/d3b1c3d307e0卡尔曼滤波在我当学生的时候就用过,但是当年我似乎就是套公式,没有理解其精髓,加之时间久了有点模糊,突然需要指导学生使用,有了强烈的陌生感觉,不得不逼自己再一次捡起。自己学会和教会别人是学习的两个层次,为了自我提高,也为了更好得指导学生。于是,我又翻出自己当年写的算法以及在网上找了些大神写的资料,进行融会贯通,总结提炼,希望稍微有点大学概率论的人能够看懂此文并熟练使用。为了可以更加容易得理解卡尔曼滤波器,我们先回顾了基础的转载 2020-06-15 14:54:50 · 1266 阅读 · 0 评论 -
简单粗暴理解匈牙利算法
转自:https://blog.csdn.net/dark_scope/article/details/8880547 【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程】匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种转载 2020-06-15 09:16:03 · 352 阅读 · 0 评论 -
(转)正则化方法在深度学习中的应用
深度学习中,卷积神经网络和循环神经网络等深度模型在各种复杂的任务中表现十分优秀。例如卷积神经网络(CNN)这种由生物启发而诞生的网络,它基于数学的卷积运算而能检测大量的图像特征,因此可用于解决多种图像视觉应用、目标分类和语音识别等问题。但是,深层网络架构的学习要求大量数据,对计算能力的要求很高。神经元和...转载 2020-06-04 16:19:19 · 1392 阅读 · 0 评论 -
卷积滤波核的设计
转载自:https://blog.csdn.net/xue_csdn/article/details/99077718参考:https://www.cnblogs.com/zongfa/p/9130167.html卷积核就是一个二维mxm矩阵。二维图像与二维矩阵卷积之后的结果,就实现了对图像的滤波。卷积核一般有以下一些规则:m的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7...转载 2020-03-31 16:20:02 · 3239 阅读 · 1 评论 -
卷积的通俗解释
在 https://www.cnblogs.com/alexanderkun/p/8149059.html 上看到关于卷积的一个“血腥”的讲解比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应,好,这样就和信号系统建立起来意义对应...原创 2019-08-28 16:21:37 · 348 阅读 · 1 评论 -
libjpeg-turbo的使用
平时都用OpenCV的imwrite存图,保存为bmp格式的图片,速度快但占用空间大;存为jpg格式,占用空间小但存图时间长。了解到libjpeg这个开源库存图,实验了一下,老版的libjpeg与OpenCV相比,没有优势。新版的libjpeg-turbo就不一样了,存图效率很高。(1)从官网下载最新版本的libjpeg-turbo(2)安装.exe文件,解压压缩包(3)应用参考do...原创 2019-05-05 11:55:38 · 8553 阅读 · 1 评论 -
YUV420P转RGB24
大多数摄像机厂家的码流输出主流YUV420planar格式,即先连续存储所有像素点的Y,紧接着存储所有像素点的U,随后是所有像素点的V。但是在实际应用中发现虽同为YUV420p格式,仍存在一些差异。如:大华摄像机的为YUV,而海康的为YVU,数据量一致,但UV数据位置反了。所以在YUV转RGB的时候,采用OpenCV转换函数cv::cvtColor的转换类型也不一样,前者为CV_YUV2B...原创 2019-03-23 19:24:13 · 2982 阅读 · 6 评论 -
常见聚类算法综述
转自https://blog.csdn.net/Katherine_hsr/article/details/793822491. K-Means(K均值)聚类算法步骤: (1) 首先我们选择一些类/组,并随机初始化它们各自的中心点。中心点是与每个数据点向量长度相同的位置。这需要我们提前预知类的数量(即中心点的数量)。 (2) 计算每个数据点到中心点的距离,数据点距离哪个中心点最近就划分到...转载 2019-04-04 09:49:50 · 716 阅读 · 0 评论 -
对Logisitic函数的理解
最近在读《深度学习与计算机视觉》这本书,里面有些东西确实很有用,最起码解释的很透彻。Logisitic函数作为机器学习中比较基础的功能函数,却没有很理解函数的意义。在二分类问题中,超平面的确定是由所有样本到超平面的距离决定的,将距离转换为概率就用到了Logisitic函数如果令可以将函数转换为Z是x的一种仿射形式,代表x为某一类别的原始度量。这时Logisitic函数要表达的就是:...原创 2019-03-15 16:54:49 · 591 阅读 · 0 评论 -
关于OpenCV中RotatedRect的参数——angle的详解
原文由作者发表在博客园: http://www.cnblogs.com/panxiaochun/p/5478555.html关于cvBox2D和RotatedRect中返回的角度angle的opencv官方说明文档里面没有给出太多到信息,其中文档是这样说的:         &a转载 2019-01-10 16:08:43 · 3566 阅读 · 1 评论