B - Burning Midnight Oil
One day a highly important task was commissioned to Vasya — writing a program in a night. The program consists of n lines of code. Vasya is already exhausted, so he works like that: first he writes v lines of code, drinks a cup of tea, then he writes as much as lines, drinks another cup of tea, then he writes lines and so on: , , , ...The expression is regarded as the integral part from dividing number a by number b.
The moment the current value equals 0, Vasya immediately falls asleep and he wakes up only in the morning, when the program should already be finished.
Vasya is wondering, what minimum allowable value v can take to let him write not less than n lines of code before he falls asleep.
InputThe input consists of two integers n and k, separated by spaces — the size of the program in lines and the productivity reduction coefficient, 1 ≤ n ≤ 109, 2 ≤ k ≤ 10.
Print the only integer — the minimum value of v that lets Vasya write the program in one night.
7 2
4
59 9
54
In the first sample the answer is v = 4. Vasya writes the code in the following portions: first 4 lines, then 2, then 1, and then Vasya falls asleep. Thus, he manages to write 4 + 2 + 1 = 7 lines in a night and complete the task.
In the second sample the answer is v = 54. Vasya writes the code in the following portions: 54, 6. The total sum is 54 + 6 = 60, that's even more than n = 59.
题意:Vasya要在晚上写一个项目,这个项目总共有n行,k是与Vasya书写效率有关的一个常数,Vasya第一次写v行,然后会喝一杯咖啡,之后会写v/k行,再喝一杯咖啡,再写v/k^2······,当v/k^p为0时,Vasya会睡着,直到第二天才会醒来,当v最小为多少时,Vasya能在睡着前完成这个项目?
思路分析:这是一个二分的题,二分v的值,不断缩小范围。
代码参考:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
long long pow(int k,int l)
{
long long i,j,sum=1;
for(i=1;i<=l;i++)
sum*=k;
return sum;
}
int check(int m,int k)
{
int i=1,sum=m,p;
p=m/k;
while(p)
{
sum+=p;
i++;
p=m/pow(k,i);
}
return sum;
}
int main()
{
int n,k;
while(~scanf("%d%d",&n,&k))
{
int l,m,r;
int i,j;
l=0;
r=n;
m=(l+r)/2;
while(l<r)
{
if(check(m,k)<n) l=m+1;
else if(check(m,k)>n) r=m;
else break;
m=(l+r)/2;
}
printf("%d\n",m);
}
return 0;
}