怎样产生标准分布或高斯分布的随机数

这里有一个由 Marsaglia 首创 Knuth 推荐的方法:
    #include <stdlib.h>
    #include <math.h>

	double gaussrand()
	{
	    static double V1, V2, S;
	    static int phase = 0;
	    double X;

	    if(phase == 0) {
		do {
		    double U1 = (double)rand() / RAND_MAX;
		    double U2 = (double)rand() / RAND_MAX;

		    V1 = 2 * U1 - 1;
		    V2 = 2 * U2 - 1;
		    S = V1 * V1 + V2 * V2;
		} while(S >= 1 || S == 0);

		X = V1 * sqrt(-2 * log(S) / S);
	    } else
		X = V2 * sqrt(-2 * log(S) / S);

	    phase = 1 - phase;

	    return X;
	}

以上代码是基于Box-Muller方法,基本思想是生成两组独立的随机数U和V,这两组数在(0,1]上均匀分布,用U和V生成两组独立的标准常态分布随机变量X和Y:

 X = \sqrt{- 2 \ln U} \, \cos(2 \pi V) ,
 Y = \sqrt{- 2 \ln U} \, \sin(2 \pi V)
这个方程的提出是因为二自由度的 卡方分布 (见性质4)很容易由指数随机变量(方程中的lnU)生成。因而通过随机变量V可以选择一个均匀环绕圆圈的角度,用指数分布选择半径然后变换成(正态分布的)x,y坐标。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
产生均匀随机数的迭代方法: 假设我们已经有了一个随机数生成器,可以生成 $[0,1]$ 之间均匀分布随机数,那么我们可以通过反复调用该随机数生成器来得到多个均匀随机数。 例如,我们想要生成 $[a,b]$ 之间的均匀分布随机数,可以先生成 $[0,1]$ 之间的均匀分布随机数 $x$,然后通过线性变换的方法将 $x$ 转换为 $[a,b]$ 之间的随机数: $$ y = a + x \cdot (b - a) $$ 其中 $a$ 和 $b$ 分别是区间的左右端点,$x$ 是 $[0,1]$ 之间的均匀分布随机数,$y$ 是 $[a,b]$ 之间的均匀分布随机数。 代码实现: ```c++ #include <iostream> #include <random> int main() { std::random_device rand_dev; // 从硬件获得种子 std::mt19937 generator(rand_dev()); // 用 Mersenne Twister 算法生成随机数 double a = 0.0, b = 1.0; for (int i = 0; i < 10; ++i) { double x = std::generate_canonical<double, 10>(generator); // 生成 [0,1] 之间均匀分布随机数 double y = a + x * (b - a); // 线性变换 std::cout << y << std::endl; // 输出 [a,b] 之间均匀分布随机数 } return 0; } ``` 产生高斯分布随机数的迭代方法: 高斯分布又称正态分布,是一种在统计学中广泛使用的概率分布高斯分布的概率密度函数为: $$ f(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} $$ 其中 $\mu$ 是均值,$\sigma$ 是标准差。 我们可以使用 Box-Muller 变换或 Ziggurat 算法来生成高斯分布随机数。 Box-Muller 变换是一种基于极坐标系的变换方法,它可以将两个独立的均匀分布随机数转换为两个独立的正态分布随机数。具体实现方法如下: - 生成两个独立的均匀分布随机数 $u_1$ 和 $u_2$,取值范围为 $[0,1]$; - 计算极径 $r$ 和极角 $\theta$:$r = \sqrt{-2\ln u_1}$,$\theta = 2\pi u_2$; - 计算正态分布随机数 $x$ 和 $y$:$x = \mu + \sigma r \cos\theta$,$y = \mu + \sigma r \sin\theta$。 其中 $\mu$ 和 $\sigma$ 分别是高斯分布的均值和标准差。 代码实现: ```c++ #include <iostream> #include <random> #include <cmath> int main() { std::random_device rand_dev; // 从硬件获得种子 std::mt19937 generator(rand_dev()); // 用 Mersenne Twister 算法生成随机数 double mu = 0.0, sigma = 1.0; for (int i = 0; i < 10; ++i) { double u1 = std::generate_canonical<double, 10>(generator); // 生成 [0,1] 之间均匀分布随机数 double u2 = std::generate_canonical<double, 10>(generator); // 生成 [0,1] 之间均匀分布随机数 double r = std::sqrt(-2.0 * std::log(u1)); double theta = 2.0 * M_PI * u2; double x = mu + sigma * r * std::cos(theta); // 正态分布随机数 std::cout << x << std::endl; // 输出正态分布随机数 } return 0; } ``` Ziggurat 算法是一种更高效的生成高斯分布随机数的算法,它利用了高斯分布的对称性和截尾性,可以在常数时间内生成高斯分布随机数。不过实现比较复杂,这里不作详细介绍。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值