线性代数系列讲解第八篇投影及AX=b(无解情况)求近似解及最小二乘法

一.投影

1.直线投影到直线

我们会将 b ⃗ \vec b b 投影到 p ⃗ = x a ⃗ \vec p=x\vec a p =xa
![在这里插入图片描述](https://img-blog.csdnimg.cn/20191205114913674.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2JlbnNzczIwMTEyMDEx,size_16,color_FFFFFF,t_70
我们可以利用发现 e ⃗ \vec e e p ⃗ \vec p p 垂直,因此我们可以利用向量正交性写出一下式子,我把向量上标去掉了,你们知道 x x x是数即可。
a T ( b − x a ) = 0 → x a T a = a T b → x = a T b a T a a^T(b-xa)=0\rightarrow xa^Ta=a^Tb\rightarrow x=\frac{a^Tb}{a^Ta} aT(bxa)=0xaTa=aTbx=aTaaTb
我们就可以知道
p = a x = a a T b a T a = P b p=ax=a\frac{a^Tb}{a^Ta}=Pb p=ax=aaTaaTb=Pb
其中 P P P为投影矩阵
P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT
我们可以发现:若 b b b翻倍, p p p翻倍;若 a a a翻倍, p p p不变。
首先我们考察一下投影矩阵 P P P,我们可以看出 P P P是个对称阵,即
P T = P P^T=P PT=P
而且,我们想想我们将 b ⃗ \vec b b 进行投影到 a ⃗ \vec a a 上变为 p ⃗ \vec p p ,然后 p ⃗ \vec p p 在投影到 a ⃗ \vec a a 的话,我们可以发现还是 p ⃗ \vec p p ,则
P 2 = P P^2=P P2=P
其实证明很简单,你直接这样就行了
P 2 = P ∗ P = a a T a T a a a T a T a = a ( a T a ) a T a T a a T a = a a T a T a P^2=P*P=\frac{aa^T}{a^Ta}\frac{aa^T}{a^Ta}=\frac{a(a^Ta)a^T}{a^Taa^Ta}=\frac{aa^T}{a^Ta} P2=PP=aTaaaTaTaaaT=aTaaTaa(aTa)aT=aTaaaT
记得 a T a a^Ta aTa a a a的内积,是个数,我们可以将它提到前面与分母相约。而且 C ( P ) C(P) C(P)( P P P的列空间)是一条过 a a a的直线,因为 P P P中列的线性组合都在 a a a上,这样我们也能得出
r a n k ( P ) = 1 rank(P)=1 rank(P)=1

2.直线投影到平面

在这里插入图片描述
假设平面内由 a 1 a_1 a1

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值