线性代数系列讲解第七篇 正交向量及正交空间

正交向量(orthogonal vector)

毕达哥拉斯定理/勾股定理(Pythagoras)

在这里插入图片描述
我们很容易得出
∣ ∣ x ∣ ∣ 2 + ∣ ∣ y ∣ ∣ 2 = ∣ ∣ x + y ∣ ∣ 2 ||x||^2+||y||^2=||x+y||^2 x2+y2=x+y2
这就是勾股定理,我们可以将一个向量的模的平方写成这种形式
∣ ∣ x ∣ ∣ 2 = x T x ||x||^2=x^Tx x2=xTx
我们举个例子:
x = [ 1 2 3 ] , y = [ 2 − 1 0 ] , x + y = [ 3 1 3 ] x=\begin{bmatrix}1\\2\\3\end{bmatrix},y=\begin{bmatrix}2\\-1\\0\end{bmatrix},x+y=\begin{bmatrix}3\\1\\3\end{bmatrix} x=123,y=210,x+y=313
我们各自算一下它的模的平方:
∣ ∣ x ∣ ∣ 2 = x T x = [ 1 2 3 ] [ 1 2 3 ] = 14    ∣ ∣ y ∣ ∣ 2 = y T y = [ 2 − 1 0 ] [ 2 − 1 0 ] = 5    ∣ ∣ x + y ∣ ∣ 2 = ( x + y ) T ( x + y ) = [ 3 1 3 ] [ 3 1 3 ] = 19 ||x||^2=x^Tx=\begin{bmatrix}1&2&3\end{bmatrix}\begin{bmatrix}1\\2\\3\end{bmatrix}=14\\\;\\||y||^2=y^Ty=\begin{bmatrix}2&-1&0\end{bmatrix}\begin{bmatrix}2\\-1\\0\end{bmatrix}=5\\\;\\||x+y||^2=(x+y)^T(x+y)=\begin{bmatrix}3&1&3\end{bmatrix}\begin{bmatrix}3\\1\\3\end{bmatrix}=19 x2=xTx=[123]123=14y2=yTy=[210]210=5x+y2=(x+y)T(x+y)=[313]313=19
我们还可以发现:
x T y = 0 x^Ty=0 xTy=0
我们可以验证 x T y = 0 x^Ty=0 xTy=0,证明如下
∣ ∣ x ∣ ∣ 2 + ∣ ∣ y ∣ ∣ 2 = ∣ ∣ x + y ∣ ∣ 2 ||x||^2+||y||^2=||x+y||^2 x2+y2

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值