4、计算机技术基础概念与应用解析

计算机技术基础概念与应用解析

1. 基础概念概述

在计算机领域,有许多重要的基础概念。比如,D/A 转换器(DAC),它能将数字信号转换为等效的模拟信号,也就是把计算机输出的二进制值序列转换为连续的表示形式。而守护进程(daemon)是一种休眠程序或进程,作为更大程序或进程的一部分,在特定条件出现时会被激活。

点阵打印机(daisywheel printer)是一种已过时的击打式字符打印机,其打印机制是通过一个无轮缘的“轮子”,轮辐从中心轮毂径向延伸,轮辐末端带有实心字符。打印时,旋转打印轮使所需字符对准打印位置,然后锤子将其击打在墨带上和纸张上,而且打印轮可更换,能使用不同的字符集,打印质量较高,常用于打印信件、文件等。

2. 数据相关概念

2.1 数据定义与类型

数据(data)在计算机中是指被输入到计算机系统以进行存储和处理的基本事实,可以是数字、字符等。它既可以作为计算机系统的输入,与系统的输出相对;也可与程序指令区分开来,指程序处理的操作数。

数据类型(data type)是指在编程语言中,变量、数组或其他更复杂的数据对象所能识别的数据种类,如整数、实数、字符串等。选择不同的数据类型会定义变量等所能取的值集以及可对其执行的操作。

2.2 数据存储与管理

直接访问存储设备(DASD)允许以任意顺序访问数据,像磁盘驱动器、CD 和 DVD 都属于此类,而磁带单元则不是。

数据库(database)是一组数据文件的集合,由数据库管理系统(DBMS)进行定义、访问和管理。数据库中的记录可寻址,能以任意顺序访问,其组织和访问方法比无关联 DBMS 的

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值