可靠性感知的容错调度算法实验研究
在可靠性感知的容错调度领域,有多种算法被提出以优化不同方面的性能,如执行成本、资源成本等。下面将详细介绍相关算法的实验研究。
1. 冗余最小化算法 ERRM 和 HRRM 实验总结
- 算法优势 :提出的冗余最小化算法 ERRM 和 HRRM 在不同规模、并行度和异构度下,能比 MaxRe 和 RR 算法产生更少的冗余。
- 计算时间与适用场景 :HRRM 能在最短计算时间内实现近似最优冗余,而 ERRM 虽然更优,但对于大规模并行应用耗时较长。因此,小规模并行应用可使用 ERRM 最小化冗余,大规模则优先选择 HRRM。
- 异构度影响 :对于低异构度应用,RR、ERRM 和 HRRM 获得的副本数量相近;而对于高异构度应用,ERRM 和 HRRM 获得的副本数量远少于 RR,更适合高异构度应用。
2. 执行成本优化算法 QFEC、QFEC+、QFSL 和 QFSL+ 实验
2.1 性能评估指标
- 实验平台 :使用 Amazon EC2 的相关信息作为测试平台,模拟包含 64 个具有不同计算能力和单价的虚拟机(VM)的异构云平台。VM 价格每小时从 $0.095 到 $0.38,故障发生率在 10⁻⁷/h 到 10⁻⁶/h 之间。
- 工作流类型 :采用线性代数、高斯消元、钻石图、完全二叉树和快速傅里叶变换五种工作流