数据特征工程与图像训练:从泰坦尼克数据集到图像分类
1. 数据特征工程的引入
在数据处理中,“直接倾倒数据”的方式往往效果不佳,而特征工程则能让数据发挥更大的价值。Danfo.js 可以帮助我们通过分析数据模式和强调关键特征来提升特征水平。我们可以在交互式的 Node.js 环境中操作,也可以利用专门构建的网页进行评估和反馈。
2. Dnotebook 的使用
Dnotebook 是一个用于使用 Danfo.js 进行数据实验、原型设计和定制的交互式网页,类似于 Python 中的 Jupyter Notebook。它能显著助力数据科学建模。
- 安装 Dnotebook :通过以下命令进行全局安装:
$ npm install -g dnotebook
运行 $ dnotebook 会自动启动本地服务器并打开本地笔记本页面。
- Dnotebook 单元格 :每个单元格可以是代码或文本,文本采用 Markdown 格式。代码可以输出结果,并且未使用 const 或 let 初始化的变量可以在不同单元格中存活。
3. 泰坦尼克数据集分析
我们以泰坦尼克数据集为例,加载两个 CSV 文件并将它们合并,然后直接在笔记本中打印结果。
// 加载并合并 C
超级会员免费看
订阅专栏 解锁全文
23

被折叠的 条评论
为什么被折叠?



