递归-泛型数学归纳将复杂问题简单化

数学归纳法

  数论中,数学归纳法用来证明任意一个给定的情形都是正确的,也就是说,第一个,第二个,一直到所有情形,概不例外。
  数学归纳法的一般步骤是这样的:

  1. 证明基本情况(通常是n = 1 的时候)是否成立;
  2. 假设n = k-1 成立,再证明n = k 也是成立的(K为任意大于1的自然数)。

  迭代法是通过重复的步骤进行计算或者查询的。数学归纳法是在理论上证明了命题是否成立。而无需迭代那样反复计算,因此可以帮助我们节约大量的资源,并大幅地提高系统的性能。

  递归可以模拟数学归纳法的证明,递归的函数值实现了从k = 1开始到k = n的迭代。既然递归的函数值返回过程和基于循环的迭代一致,那为什么不直接用迭代法,反而需要递归的数学思想和编程方法呢?

  假设一个命题:现在有1元、5元、10元面额的钞票,如果奖赏你20元,那么会有几种不同的奖赏方式?

  这儿就需要使用函数递归,在递归中,每次嵌套调用都会让函数体生成自己的局部变量,正好可以用来保存不同状态下的数值。可是,这里不是要计算一个最终的数值,而是要列举出所有的可能性。

将复杂的问题简单化

首先,数学归纳法考虑两种情况:

  1. 初始状态,也就是n = 1的时候,命题是否成立;
  2. 如果n = k-1的时候,命题成立。那么只要证明n = k 的时候,命题也成立。其中k 为大于1 的自然数。

将上述两点顺序更换一下,在抽象一下,可以的得到这样的递推关系:

  1. 假设n = k-1 的时候,问题已经解决(或者已经找到解)。那么只要求解n = k的时候,问题如何解决(或者解是多少);
  2. 初始状态,就是n = 1的时候,问题如何解决(或者解是多少)。

  如上这种思想就是将复杂的问题,每次都解决一点点,并将剩下的任务转化成更简单的问题等待下次求解,如此反复,直到最简单的形式。

  那么对于之前的命题,我们可以将这个思想具体化:

  1. 假设n = k-1 的时候,我们已经知道如何去求所有奖赏的组合。那么只要求解n =
    k的时候,会有哪些金额的选择,以及每种选择后还剩下多少奖金需要支付就可以了。
  2. 初始状态下,n = 1的时候,会有多少种奖赏。
JavaScript编程实现。
var rewards = [1,5,10];
function get(totalReward,result){
    if(totalReward == 0){
        console.log(result);
    }else if(totalReward < 0){
        return;
    }else{
        for(var i=0; i<rewards.length; i++){
            var newResult = [];
            newResult = result.slice(0);
            newResult.push(rewards[i]);
            get(totalReward - rewards[i], newResult);
        }
    }
}
var result = [];
get(10,result);

控制台信息

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值