选择排序
核心思想:
- O ( n 2 ) O(n^2) O(n2) 的复杂度,两次for 循环循环遍历
- 第一次循环找到
min_index
,接着再在后面的元素里面去找到最小的元素
# 选择排序
def select_sort(origin_items,comp = lambda x,y:x<y):
items = origin_items[:]
for i in range(len(items) - 1):
min_index = i
for j in range(i+1,len(items)):
if comp(items[j],items[min_index]):
min_index = j
items[i],items[min_index] = items[min_index],items[i]
return items
冒泡排序
核心思想:
- 时间复杂度 O ( n 2 ) O(n^2) O(n2),两个 for 循环
- 和选择排序从后面找到最小的不同,冒泡排序是彼此相邻两个元素的交换
- 因为是相邻两个比较,交换顺序。这样最大的元素一定在第一次循环之后,就到了最后一个(升序)。因此,下一次循环就不需要比较到最后一个元素了。
def bubble_sort(origin_items,comp = lambda x,y : x>y):
items = origin_items[:]
for i in range(1,len(items)):
for j in range(0,len-i):
if comp(items[j],items[j+1]):
items[j],items[j+1] = items[j+1],items[j]
return items
归并排序
核心思想:
- 两个环节:归并排序和合并
- 归并排序通过递归,分别把两边排好序
- 然后再将其通过合并,合并起来
def merge_sort(items,comp = lambda x,y:x<=y):
if len(items) < 2:
return items[:]
mid = len(items) // 2
left = merge_sort(items[:mid],comp)
right = merge_sort(items[mid:],comp)
return merge(left,right)
def merge(item1,item2,comp):
items = []
index1,index2 = 0,0
while index1 < len(item1) and index2 < len(item2):
if comp(item1[index1],item2[index2]):
items.append(item1)
index1+=1
else:
items.append(item2)
index2+=1
items+=item1[index1:]
items+=item2[index2:]
return items
顺序查找
找到index = key 的元素
def seq_search(items,key):
for index,item in enumerate(items):
if item == key:
return index
return -1
二分查找
一定注意好边界值
def bin_search(items,key):
start,end = 0,len(items)-1
while start <= end:
mid = (start + end) //2
if key > items[mid]:
start = mid + 1
elif key < items[mid]:
end = mid - 1
else:
return mid
return -1
https://github.com/besonn/Python-100-Days