蓝桥杯-算法训练-最短路

本文介绍了蓝桥杯算法训练中的最短路径问题,探讨了在有向图中处理负权重边的不同算法,包括Dijkstra、Floyd、Bellman-Ford和SPFA。重点指出SPFA算法适用于解决包含负权重边的情况,且在大数据集下仍能避免超时,同时给出了SPFA算法的正确性和时间复杂度分析。此外,还分享了一段超时的Bellman-Ford算法代码,强调了不同算法适用的数据规模。
摘要由CSDN通过智能技术生成

问题描述

给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。

输入格式

第一行两个整数n, m。

接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出格式

共n-1行,第i行表示1号点到i+1号点的最短路。

样例输入

3 3
1 2 -1
2 3 -1
3 1 2

样例输出

-1
-2

数据规模与约定

对于10%的数据,n = 2,m = 2。

对于30%的数据,n <= 5,m <= 10。

对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。

什么鬼,开始没认真看数据范围,以为都是两万之内,原来m小于二十万,所以超时了,只给了七十分,这两天看了四种关最短路径的问题,diijkstra,flody,bellman-ford,SPFA,然并卵,没有真正掌握它们,但是我还是有一些总结的,关于这四种算法:
dijkstra适用于边权没负数,且数据可处理大一些的,二而flody代码简单,但容易超时,也是处理无负数边,这两个都不能处理回向图;而bellman可处理负数边权,但是数据大了会超时,用SPFA可处理超时问题,但是它用了队列知识,并且代码较其它复杂。
这道题要用SPFA算法,bellman算法会超时

定理: 只要最短路径存在,上述SPFA算法必定能求出最小值。

证明:

  每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。(证毕)

期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2

#include <iostream>
#include<cstdio>
#include<queue>
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值