求一个数的位数
求一个数的位数很简单,只需要循环除以10就可以了。但是如果求一个很大的一个数的位数呢,就比如说 100! 的位数,这个时候就无法正常进行求位数了
首先知道一个数 10^x-1<=a<10^x;
很明显,a的位数为x位;
根据 (int)lg(10^x-1)<=(int)lg(a)<(int)lg(10^x)
再进行化简一下得 x-1<=(int)lg(a) < x
很明显 (int)lg(a)=x-1;
得出 x=(int)lg(a)+1;
就这样就可以得出 a的位数了
根据公式lg(1*2*3*…*n)=lg(1)+lg(2)+lg(3)+…+lg(n)就可以得出任意一个数的阶乘的位数。
代码如下:
for (int i=num;i>0;i--)
sum+=log10(i);
cout<<(int)sum+1<<endl;
现在,求一个数的阶乘该如何求呢,当数字很小的时候当然很好计算,但是数字很大的时候呢,就比如上面的 100! ,这个时候就已经超过了int的范围了,这个时候就用到了一种算法,大数算法。
简单来说,就是用数组模拟运算的整个过程。首先用一个str数组来存放阶乘的每一位数字,令str[0]=1;位数为1,将每次的乘积先用一个变量存储起来,然后再将乘积通过对10取余数更新到数组中,直到将所有的数都乘积过后,开始更新位数以及每一位的数字(对10取余或取整)。
#include <iostream>
#include <stdio.h>
using namespace std;
int main()
{
int str[4000];
int n;
while(cin>>n)
{
str[0]=1;
long long carry=0; // 进位数
long long flag=1; // 位数
for (int i=2;i<=n;i++)
{
long long res=0;
for (int j=0;j<flag;j++)
{
res=str[j]*i+carry; // 乘积的结果
str[j]=res%10;
carry=res/10; // 计算进位的数
}
while (carry) // 更新位数
{
flag++; // 位数
str[flag-1]=carry%10;
carry/=10;
}
}
for (int i=flag-1;i>=0;i--)
cout<<str[i];
cout<<endl;
}
return 0;
}
大数阶乘就是这样了。