先放代码,日后更。(*2)
===========================2018.3.21UPD===========================
题面在这里
做法
容易发现只要将query的 l−1,r l − 1 , r 改成 r+1,l r + 1 , l 就是正确的了。所以最后答案之和 l−1,r l − 1 , r 这两个点的奇偶性是否相同有关。问题转化为维护两个位置的奇偶性相同的概率,二维数点,可以用树套树解决。注意 l=1 l = 1 的情况需要注意一下。
代码
为什么我的代码跑得那么慢!!
人傻自带大常数qwq。
/*
* 转化题意;
* 二维数点;
* 分类讨论;
* 概率论;
*/
#include<bits/stdc++.h>
#define rep(i,x,y) for (int i=(x); i<=(y); i++)
#define N 100010
#define M 40000010
#define ll long long
#define mod 998244353
#define lc (o<<1)
#define rc (o<<1|1)
using namespace std;
ll read(){
char ch=getchar(); ll x=0; int op=1;
for (; !isdigit(ch); ch=getchar()) if (ch=='-') op=-1;
for (; isdigit(ch); ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*op;
}
int n,m,ans,tot,rt[N<<2],ls[M],rs[M],val[M];
int ksm(int x,int p){
int ret=1;
for (; p; p>>=1,x=(ll)x*x%mod) if (p&1) ret=(ll)ret*x%mod;
return ret;
}
int inv(int x){
return ksm(x,mod-2);
}
int merge(int x,int y){
return ((ll)x*y%mod+(ll)(1+mod-x)*(1+mod-y)%mod)%mod;
}
void upd2(int &o,int l,int r,int x,int y,int p){
if (!o) o=++tot,val[o]=1;
if (x<=l && r<=y){
val[o]=merge(val[o],p);
return;
}
int mid=l+r>>1;
if (x<=mid) upd2(ls[o],l,mid,x,y,p);
if (y>mid) upd2(rs[o],mid+1,r,x,y,p);
}
void qry2(int o,int l,int r,int x){
if (!o) return;
ans=merge(ans,val[o]);
if (l==r) return;
int mid=l+r>>1;
if (x<=mid) qry2(ls[o],l,mid,x); else qry2(rs[o],mid+1,r,x);
}
void upd(int o,int l,int r,int x,int y,int xx,int yy,int p){
if (x<=l && r<=y){
upd2(rt[o],0,n,xx,yy,p);
return;
}
int mid=l+r>>1;
if (x<=mid) upd(lc,l,mid,x,y,xx,yy,p);
if (y>mid) upd(rc,mid+1,r,x,y,xx,yy,p);
}
void qry(int o,int l,int r,int x,int y){
if (rt[o]) qry2(rt[o],0,n,y);
if (l==r) return;
int mid=l+r>>1;
if (x<=mid) qry(lc,l,mid,x,y); else qry(rc,mid+1,r,x,y);
}
int main(){
n=read(); m=read(); int now=0;
while (m--){
int opt=read(),l=read(),r=read();
if (opt==1){//修改
int p=inv(r-l+1),p2=2ll*p%mod;//二维区间更新
upd(1,0,n,0,l-1,l,r,1+mod-p);
if (r<n) upd(1,0,n,l,r,r+1,n,1+mod-p);
upd(1,0,n,l,r,l,r,1+mod-p2);
now^=1;
} else{
ans=1;
if (l==1 && (now&1)){ qry(1,0,n,0,r); ans=(1+mod-ans)%mod; }
else qry(1,0,n,l-1,r);//二维单点查询
printf("%d\n",ans);
}
}
return 0;
}