处理字符串问题时。
我们经常会碰到处理回文串的情况,马拉车算法是处理回文串问题的一个非常好用的算法。它可以在O(n)时间内处理出一个字符串所有的回文中心(可以是字符也可以是字符之间的空)的最长回文串的长度。
首先我们考虑暴力的情况。
比如abba,它的回文中心有7个,分别是四个字符和他们中间的三个空。
确定回文中心后我们大概要这么处理:
假设t为回文中心,len[t]表示以t为回文中心的回文串的回文半径
while(str[t+len[s]]==str[t-len[s]]){len[t]++;}
纯暴力的情况下 我们给所有的len[s]都初始赋值为0。这样做很多时候都会时间超限。
而manacher()的巧妙之处就在于对len[s]的初始赋值。
下面我们讨论一下,再求len[s]时如何利用之前1到(s-1)的数值来减少匹配的次数。
我们在求值的时候维护两个值,一个值是再求回文半径时候,回文串能达到的最右位置(用mx表示),然后用id记录在这个情况下的回文中心id。
在求s为回文中心的len[s]时候,我们先判断一下s是否小于mx,如果大于mx,那就赋值0,如果没有,那么我们可以根据s关于id的对称位置s’来给len[s]赋初始值。
如果s+len[s’]<mx时 len[s]=len[s’](根据红色是个回文串这个性质来推)
当s+len[s’]>=mx时,我们可以保证(len[s]>=mx-i)
综上 我们令len[s]=min(len[2*id-s],mx-s);
然后在每求出一个值时都更新下mx和id。
为了方便处理manacher算法的初始化,将每两个字符的中间插入’#’(任意为出现字符都可以),这样我们在处理时候,可以统一将字符作为回文中心(空格被’#‘代替),然后在串的开始插入’$’(未出现字符,作用是防止求回文半径时,数组越界)
详见代码和注释
const int maxn=1e5+50;
char s[maxn],news[maxn*2];//开两倍空间,防止RE
int p[maxn*2];
int init(){ //初始化
int len=strlen(s);
news[0]='$';
news[1]='#';
int j=2;
for(int i=0;i<len;i++){
news[j++]=s[i];
news[j++]='#';
}
news[j]='\0';
return j;
}
void manacher(){
int len=init();
int id;
int mx=0;
for(int i=1;i<len;i++){
if(i<mx)
p[i]=min(p[2*id-i],mx-i);
else p[i]=1;
while(news[i-p[i]]==news[i+p[i]])p[i]++;
if(mx<i+p[i])id=i,mx=i+p[i]; //每一步更新一下id和mx
}
}
当然这是最基础的,马拉车还能用来处理很多比如以i为开始或者结束的最长回文串的长度,或者以i为开始或者结束的不同回文串的个数(PAM也能处理)。
下面我们做一部分练习题目。
1.求一个串的最长回文子串的长度
简单题,对于每个p[i]都更新一下答案
洛谷P3805
2.求一个串的所有回文子串的总贡献
简单题,根据规则枚举一下回文中心的回文半径,快速乘计算贡献。
洛谷P1659
3.求一个串的一个最长满足要求的子串
洛谷P4555
这个子串要能分成两部分,且两部分都由回文串构成。
这个题目蛮有意思的,我们要维护两个值,枚举每个’#'处理以它为开头的最长回文串的长度,和以它为结尾的最长回文串的长度,然后更新答案就行了。
这里当我们在每求出一个p[i]是,应该是更新一段区间内的r和l的值(这样做的时间复杂度很高),但是我们可以根据l和r的性质,只更新最值,然后扫一遍。O(n)处理详见代码。
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+50;
char s[maxn],news[maxn*2];
int p[maxn*2],l[maxn*2],r[maxn*2];
int init(){
int len=strlen(s);
news[0]='$';
news[1]='#';
int j=2;
for(int i=0;i<len;i++){
news[j++]=s[i];
news[j++]='#';
}
news[j]='\0';
return j;
}
void manacher(){
int len=init();
int id;
int mx=0;
for(int i=1;i<len;i++){
if(i<mx)
p[i]=min(p[2*id-i],mx-i);
else p[i]=1;
while(news[i-p[i]]==news[i+p[i]])p[i]++;
if(mx<i+p[i])id=i,mx=i+p[i];
l[i+p[i]-1]=max(l[i+p[i]-1],p[i]-1);//每步更新一段区间的一个最值
r[i-p[i]+1]=max(r[i-p[i]+1],p[i]-1);//
}
}
int main(){
scanf("%s",s);
manacher();
int len=strlen(s);
len=len*2+1;
for(int i=3;i<=len;i+=2)r[i]=max(r[i],r[i-2]-2);//根据性质扫一遍
for(int i=len;i>=1;i-=2)l[i]=max(l[i],l[i+2]-2);
int ans=0;
for(int i=3;i<len;i+=2)ans=max(ans,l[i]+r[i]);
printf("%d\n",ans);
return 0;
}