点我打开题目
题目描述:
n个点,m条边,边为双向边,每条边有最大载重,q个询问,每个询问包含两个整数a和b,询问一辆货车从a到b可以的最大载重。
不保证一定有道路从a到b(保证a!=b)。
这个题目只要求最大载重,没有要求路径的距离,所以我们“贪心”的想,货车一定是走极限载重大的路,所以我们需要删掉一部分边,这些边是一定不会走的,但是删边的同时,必须要保证原本互相连通的两个点不会因此而不连通,还要保证这两个点之间边的权重的最小值最大,所以我们首先需要把每个强联通分量都遍历一遍,将其最大生成树上的边保存下来,建新图。
建好了新图之后,我们接下来要解决的问题就是要使得从a到b不走多余的路(可以这样理解,我们要保证最小值最大,所以多走路不会使得原本答案变大,只能使答案不变或更小),我们需要对a和b两个点求LCA以此来保证经过得路径都是必要的。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 5e4 + 10;
const int MAX = 1e4 + 50;
#define inf 0x3f3f3f3f
struct Node {
int x, y, w;
}e1[maxn];
struct Nod {
int to, nxt, w;
}e[maxn];//保存新图
int cnt, n, m;
int head[MAX], fa[MAX], deep[MAX], g[MAX][16],w[MAX][16];
bool vis[MAX];
inline void add(int u, int v, int w) {
e[++cnt].to = v;
e[cnt].nxt = head[u];
e[cnt].w = w;
head[u] = cnt;
}
inline bool cmp(Node a, Node b) { return a.w > b.w; }
inline int find(int x) { if(fa[x] != x)return fa[x] = find(fa[x]); return x; }
void kruskal() {
sort(e1 + 1, e1 + 1 + m, cmp);
for (int i = 1; i <= n; i++)fa[i] = i;
for (int i = 1; i <= m; i++)
if (find(e1[i].x) != find(e1[i].y)) {
fa[find(e1[i].x)] = find(e1[i].y);
add(e1[i].x, e1[i].y, e1[i].w);
add(e1[i].y, e1[i].x, e1[i].w);
}
}
inline void dfs(int x, int fa) {
vis[x] = 1;
deep[x] = deep[fa] + 1;
g[x][0] = fa;
for (int i = 1; i <= 15; i++)
g[x][i] = g[g[x][i - 1]][i - 1], w[x][i] = min(w[x][i-1], w[g[x][i - 1]][i - 1]);//w数组存储路径上的最小值
for (int i = head[x]; i; i = e[i].nxt)
if (e[i].to != fa){
w[e[i].to][0] = e[i].w;
dfs(e[i].to, x);
}
}
int lca(int x, int y) {
if (find(x) != find(y))return -1;//不在一个强联通分量里,即互相不可达
int ans = inf;
if (deep[x] < deep[y])swap(x, y);
for (int i = 15; i >= 0; i--)
if ((1 << i) <= deep[x] - deep[y])
ans = min(ans, w[x][i]), x = g[x][i];
if (x == y)return ans;
for (int i = 15; i >= 0; i--)
if (g[x][i] != g[y][i]) {
ans = min(ans, min(w[x][i], w[y][i]));
x = g[x][i];
y = g[y][i];
}
ans = min(ans, min(w[x][0], w[y][0]));
return ans;
}
int main() {
int a, b, c, q;
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &a, &b, &c);
e1[i].x = a;
e1[i].y = b;
e1[i].w = c;
}
kruskal();
for(int i=1;i<=n;i++)
if (!vis[i]) {
w[i][0] = inf;
dfs(i, i);
}
scanf("%d", &q);
while (q--){
scanf("%d%d", &a, &b);
printf("%d\n", lca(a, b));
}
return 0;
}