训练所服务器该从哪些方面考虑
大模型训练的配置选择需要考虑计算资源、存储资源和分布式训练等因素。
为了处理大规模的数据和复杂的模型结构,需要选择具有高性能的多核心CPU和高性能GPU的计算机。同时,需要足够的存储资源来存储大规模的数据集和模型参数,建议选择大容量、高速的存储设备。
此外,需要使用分布式训练框架将训练任务分配到多台机器上进行并行计算,需要考虑网络连接的速度和稳定性。
最后,还需要选择稳定的操作系统和电源等硬件设备来保证训练的效率和速度。
核心配置逻辑——GPU选型
大模型处理的数据量巨大无比,整个处理过程可以分为训练(train)、微调(fine-tune)和推理(inference)。从算力消耗上来说,是训练>微调>推理,训练要比推理的算力消耗高至少3个数量级以上,训练和微调大型语言模型对于硬件资源的要求非常高。
训练不纯粹看一个显存容量大小,而是和芯片的算力高度相关的。
显存大小
实际训练的过程当中,将海量的数据切块成不同的batch size,然后送入显卡进行训练。显存大,意味着一次可以送进更大的数据块。但是芯片算力如果不足,单个数据块就需要更长的等待时间。显存和算力,必须要相辅相成。在有限的产品成本内,两者应当是恰好在一个平衡点上。
目前,4090是消费级显卡的顶级选择,显存大小为24GB,而H100和H800单张显卡的显存大小均为80GB。这个参数对于存储大规模模型和数据集时非常重要。
显存带宽
另外,我们还需要考虑GPU的显存带宽,即GPU芯片与显存之间的读写速度。显存带宽是影响训练速度的关键因素。例如,4090显卡的显存带宽为1.15TB/s,而A100和H100的显存带宽分别为1.99TB/s和3.35TB/s。
与 CPU 的通信速度
目前主流的大模型训练硬件通常采用英特尔的CPU和英伟达的GPU。在传统英特尔+英伟达独立显卡架构下,CPU与GPU之间的通信通常通过PCIe进行。
最强大的H100/H800支持PCIe Gen5,传输速度为128GB/s。而A100和4090则支持PCIe 4,传输速度为64GB/s。
GPU 显卡的多种版本及区别
GPU 显卡存在多种版本,其主要是应对不同的场景,以下我们以