FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析

  大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。

  本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大语言模型的同学们有所帮助。

1. 前言

  最近不少同学们总会遇到类似下图中OOM(Out Of Memory)的问题,如下图所示,绝大多数都是由于显存不够造成的:
在这里插入图片描述
  那么针对于不同精度的模型,具体来说加载不同精度(FP16、BF16、INT8、INT4)的模型需要占用的显存大小到底是什么呢?如果能够根据模型参数提前推算出所需的GPU资源,就能够按照需求使用或者租借相应的GPU资源。另外由于不同GPU的硬件结构是不一样的,所以并不一定能够适配所有的精度(如BF16)。

评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

herosunly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值