一提到 AI 计算,显卡性能,就有一大堆参数性能列表,这些列表全是一堆堆的参数数据,他们都代表啥?本文整理了常见的参数说明供大家了解。
FP64
FP64是指双精度浮点数格式,占用64位(即8字节)的存储空间,可以表示范围在±1.189731491523451 × 10^-308到±3.141592653589793 × 10^307之间的数值。在科学计算、计算机图形学等领域中,FP64是一种常用的浮点数格式,可以提供较高的精度和计算性能。
FP64 tensor core
FP64 Tensor Core是Tensor Cores支持的一种精度格式,它支持半精度(FP16)数据来加速矩阵乘法,并使用单精度(FP32)或双精度(FP64)数据来修正结果,以获得更高的精度。在Tensor Core中,FP16数据被划分为4x4的矩阵块,每个矩阵块都可以与另一个4x4的矩阵块相乘,生成一个4x4的FP32或FP64矩阵块。这种混合精度计算方法在加速深度学习模型的同时,可以保持高精度的计算结果。
FP32
FP32(单精度浮点数)是一种数字格式,占用32位(即4字节)的存储空间,可以表示范围在±1.189731491523451 × 10^-38到±3.4028234663852886 × 10^38之间的数值。FP32在计算机图形学、科学计算和许多其他领域中非常常见,因为它可