有哪些开源的视频生成模型

在这里插入图片描述

1. 阿里巴巴通义万相2.1(WanX 2.1)

  • 技术架构:基于Diffusion Transformer(DiT)架构,结合自研的高效变分自编码器(VAE)和Flow Matching训练方案,支持时空上下文建模。
  • 参数规模:提供14B和1.3B两种参数规格,后者支持本地部署(仅需8.2GB显存)。
  • 生成能力
    • 支持无限长1080P视频的高效编解码,首次实现中文文字视频生成。
    • 可生成复杂运镜效果,并还原物理规律(如雨滴溅水效果)。
  • 应用场景:广告设计、宣传片、短视频创作。
  • 性能指标
    • 在VBench评测中以86.22%得分位居榜首,超越Sora、Luma等模型。
    • 生成速度比原有SOTA模型快2.5倍,运动质量指标达商用级别。

2. 腾讯混元大模型(Hunyuan Video)

  • 技术架构:130亿参数的图生视频模型,基于Hybrid-Mamba-Transformer混合架构,支持中英文输入和多尺寸视频生成。
  • 生成能力
    • 生成5秒短视频,支持对口型、唱歌功能及动漫角色制作。
    • 提供视频配音与数字人驱动
### 可用于生成视频的免费开源模型 近年来,随着深度学习技术的发展,许多高质量的开源项目被开发出来以支持视频生成任务。这些模型通常基于序列建模、图像合成以及时间维度上的特征提取方法构建。 一种流行的框架是Video Diffusion Models[^1],它通过扩散过程来逐步生成高分辨率的视频帧。这类模型能够很好地捕捉运动模式并生成连贯的时间序列数据。另一个值得关注的是Phenaki,这是一个由Google Research发布的多模态生成模型,可以依据文本提示生成具有高度多样性的视频片段。 对于更具体的实现需求,还可以考虑使用RunwayML提供的工具集[^2],虽然部分功能可能需要付费订阅,但它也提供了基础版本供开发者探索和测试不同的视频生成算法。 此外,在GitHub上活跃维护的一些仓库如`videodiffusion`[^3] 和 `phenaki-replication`[^4] 提供了详细的教程文档及预训练权重下载链接,方便研究者快速上手实验。 ```python import torch from diffusers import VideoGeneratorPipeline model_id = "runwayml/stable-video-diffusion" pipe = VideoGeneratorPipeline.from_pretrained(model_id) prompt = "A panda is playing basketball." video_frames = pipe(prompt).frames print(f"Generated {len(video_frames)} video frames.") ``` #### 注意事项 当选用上述任何一款模型时,请务必确认其许可协议是否允许商业用途或者二次分发等情况发生;同时也建议关注官方更新日志以便获取最新改进成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔王阿卡纳兹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值