大模型的Lora如何训练?

大模型LoRA(Low-Rank Adaptation)训练是一种参数高效的微调方法,通过冻结预训练模型权重并引入低秩矩阵实现轻量化调整。以下是涵盖原理、数据准备、工具、参数设置及优化的全流程指南:


一、LoRA的核心原理

  1. 低秩矩阵分解
    在原始权重矩阵$ W 旁添加两个低秩矩阵 旁添加两个低秩矩阵 旁添加两个低秩矩阵 A 和 和 B ,其秩( r a n k )为 ,其秩(rank)为 ,其秩(rank)为 r $,更新公式为:
    W LoRA = W + α ⋅ ( A ⋅ B ) W_{\text{LoRA}} = W + \alpha \cdot (A \cdot B) W

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔王阿卡纳兹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值