确定比赛名次
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 22444 Accepted Submission(s): 9100
Problem Description
有N个比赛队(1<=N<=500),编号依次为1,2,3,。。。。,N进行比赛,比赛结束后,裁判委员会要将所有参赛队伍从前往后依次排名,但现在裁判委员会不能直接获得每个队的比赛成绩,只知道每场比赛的结果,即P1赢P2,用P1,P2表示,排名时P1在P2之前。现在请你编程序确定排名。
Input
输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示队伍的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即P1队赢了P2队。
Output
给出一个符合要求的排名。输出时队伍号之间有空格,最后一名后面没有空格。
其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。
其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。
Sample Input
4 3 1 2 2 3 4 3
Sample Output
1 2 4 3
Author
SmallBeer(CML)
Source
Recommend
其实三种方法的思想是一样的,不过是实现方式不同。思想都是:标记各个节点的度数,前驱为0是则满足排列条件,可以拿出到存储结果的数组。大部分都是有顺序输出比如从大到小、从小到大等。
其实更多的是用邻接表和优先队列配合使用,用邻接表可以节省空间,再辅以优先队列优化以节省时间。
数组矩阵实现(适合数据较小):
#include<stdio.h>
#include<math.h>
#include<iostream>
#include<string.h>
using namespace std;
const int N = 505;
int degree[N];
int n,m;
int map[N][N],queue[N];
void topo() {
int m,t=0;
for(int i=1; i<=n; i++) {
for(int j=1; j<=n; j++) {
if(!degree[j]) {
m=j;
break;
}
}
degree[m]=-1;
queue[t++]=m;
for(int j=1; j<=n; j++) {
if(map[m][j])
degree[j]--;
}
}
for(int l=0; l<n; l++)
if(!l)
printf("%d",queue[l]);
else
printf(" %d",queue[l]);
printf("\n");
}
int main() {
while(scanf("%d%d",&n,&m)!=EOF) {
memset(degree,0,sizeof(degree));
memset(map,0,sizeof(map));
for(int l=0; l<m; l++) {
int a,b;
scanf("%d%d",&a,&b);
if(!map[a][b]) {
map[a][b]=1;
degree[b]++;
}
}
topo();
}
return 0;
}
邻接矩阵实现(最常用):
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
using namespace std;
const int N = 505;
int degree[N],queue[N],head[N];
int n,m,cnt;
struct Edge {
int to,next;
} edge[10000];
void add(int a,int b) {
edge[cnt].to=b;
edge[cnt].next=head[a];
head[a]=cnt++;
degree[b]++;
}
void topo() {
int u,t=0;
for(int l=1; l<=n; l++) {
for(int j=1; j<=n; j++) {
if(!degree[j]) {
u=j;
break;
}
}
queue[t++]=u;
degree[u]=-1;
for(int i=head[u]; i!=-1; i=edge[i].next) {
int v=edge[i].to;
degree[v]--;
}
}
for(int i=0; i<n; i++)
if(!i)
printf("%d",queue[i]);
else
printf(" %d",queue[i]);
printf("\n");
}
int main() {
while(scanf("%d%d",&n,&m)!=EOF) {
memset(degree,0,sizeof(degree));
memset(head,-1,sizeof(head));
cnt=0;
for(int i=1; i<=m; i++) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
topo();
}
return 0;
}
队列实现:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#include<functional>
#include<cstdlib>
using namespace std;
const int N = 505;
int degree[N],map[N][N];
int n,m;
void topo() {
priority_queue<int ,vector<int>,greater<int> >Q;//最小值优先
//priority_queue<int, vector<int>,less<int > >Q;//最大值优先
for(int l=1; l<=n; l++) {
if(!degree[l]) {
Q.push(l);
}
}
int mark=1;
while(!Q.empty()) {
int top=Q.top();
Q.pop();
if(mark)
printf("%d",top);
else
printf(" %d",top);
mark=0;
degree[top]=-1;
for(int l=1; l<=n; l++) {
if(map[top][l]) {
degree[l]--;
if(!degree[l])
Q.push(l);
}
}
}
printf("\n");
}
int main() {
while(scanf("%d%d",&n,&m)!=EOF) {
memset(map,0,sizeof(map));
memset(degree,0,sizeof(degree));
for(int l=1; l<=m; l++) {
int a,b;
scanf("%d%d",&a,&b);
if(!map[a][b]) {
map[a][b]=1;
degree[b]++;
}
}
topo();
}
return 0;
}
点击打开链接http://acm.hdu.edu.cn/showproblem.php?pid=1285