汉诺塔代码原理解析

      给定三根柱子,记为 A,B,C,其中 A 柱子上有 n 个盘子,从上到下编号为0到n -1,且上面的盘子一定比下面的盘子小。

问: 将A 柱上的盘子经由 B 柱移动到 C 柱最少需要多少次?
移动时应注意:一次只能移动一个盘子

下图为汉诺塔问题图片

 

 汉诺塔首先用到递归的思想,一层一层的分析。

 首先汉诺塔就是不断移动上面的方块,从A移动到C。

 先将第n个方块从A移动到C位置。

 然后将第n-1个方块从A移动到C位置。

.........

然后将第2个方块移动到C位置。

最后把第1个方块移动到C位置。

明白这些后,我们以当有3个汉诺塔时,进行排序移动。

1. 将A位置上的前n-1个全部移到B位置

2.将A位置上第n个全部移动到C位置

3.然后将B位置上的前n-2个全部移动A位置上

4.将B位置上的第n-1个移动到C位置上

..........

这样就构成了递归,我们只需要不断重复1.2.3.4.步

我们上代码

void hanoi(int n, char A, char B, char C)
{
	if (n == 1)
	{
		printf("%c->%c\n", A, C);//只剩最后一个的时候
	}
	else
	{
		hanoi(n - 1, A, C, B);将前n-1个方块从A绕C到B柱上
         //此时A位置上有第n个方块。
		printf("%c->%c\n", A, C);//将A位置上的第n个方块移动到C上。
		hanoi(n - 1, B, A, C);//将B位置上剩下的第n-2个方块从B绕A到C柱上
	}
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	hanoi(n, 'A', 'B', 'C');
	return 0;
}

 运算结果

 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值