1098. 城堡问题【搜索 求连通块】

在这里插入图片描述
https://www.acwing.com/problem/content/description/1100/
本质就是一个求连通块的问题,但是因为墙的限制有的不可以走。
你会发现墙分别为 1 2 4 8 故可以用位运算的思想来判断可不可以走即可。

#include<bits/stdc++.h>
using namespace std;
const int N=105;
int n,m,a[N][N],st[N][N];
int ans,res,cnt;
int dx[4]={0,-1,0,1};
int dy[4]={-1,0,1,0};
void dfs(int x,int y)
{
    st[x][y]=1,cnt++;
    for(int i=0;i<4;i++)
    {
        int tempx=x+dx[i];
        int tempy=y+dy[i];
        if(tempx<0||tempx>=n||tempy<0||tempy>=m) continue;
        if(a[x][y]>>i&1) continue;
        if(st[tempx][tempy]) continue;
        dfs(tempx,tempy);
    }
}
int main(void)
{
    cin>>n>>m;
    for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
            cin>>a[i][j];
    for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
            if(!st[i][j]) dfs(i,j),ans=max(ans,cnt),cnt=0,res++;
    cout<<res<<endl<<ans<<endl;
    return 0;
}
#include<bits/stdc++.h>
using namespace std;
const int N=55;
int a[N][N],n,m;
int st[N][N];
int dx[4]={0,-1,0,1};
int dy[4]={-1,0,1,0};
int cnt,area;
int bfs(int x,int y)
{
    int t=0;
    queue< pair<int,int> > q; q.push({x,y});
    st[x][y]=1;
    while(q.size())
    {
        x=q.front().first,y=q.front().second;
        q.pop();
        t++;
        for(int i=0;i<4;i++)
        {
            int tempx=x+dx[i];
            int tempy=y+dy[i];
            if(tempx<0||tempx>=n||tempy<0||tempy>=m) continue;
            if(st[tempx][tempy]) continue;
            if(a[x][y]>>i&1) continue;
            q.push({tempx,tempy});
            st[tempx][tempy]=1;
        }
    }
    return t;
}
int main(void)
{
    cin>>n>>m;
    for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
            cin>>a[i][j];
    for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
            if(!st[i][j])
            {
                cnt++;
                area=max(area,bfs(i,j));
            }
    cout<<cnt<<endl;
    cout<<area<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值