https://www.acwing.com/problem/content/description/1100/
本质就是一个求连通块的问题,但是因为墙的限制有的不可以走。
你会发现墙分别为 1 2 4 8
故可以用位运算的思想来判断可不可以走即可。
#include<bits/stdc++.h>
using namespace std;
const int N=105;
int n,m,a[N][N],st[N][N];
int ans,res,cnt;
int dx[4]={0,-1,0,1};
int dy[4]={-1,0,1,0};
void dfs(int x,int y)
{
st[x][y]=1,cnt++;
for(int i=0;i<4;i++)
{
int tempx=x+dx[i];
int tempy=y+dy[i];
if(tempx<0||tempx>=n||tempy<0||tempy>=m) continue;
if(a[x][y]>>i&1) continue;
if(st[tempx][tempy]) continue;
dfs(tempx,tempy);
}
}
int main(void)
{
cin>>n>>m;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
cin>>a[i][j];
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
if(!st[i][j]) dfs(i,j),ans=max(ans,cnt),cnt=0,res++;
cout<<res<<endl<<ans<<endl;
return 0;
}
#include<bits/stdc++.h>
using namespace std;
const int N=55;
int a[N][N],n,m;
int st[N][N];
int dx[4]={0,-1,0,1};
int dy[4]={-1,0,1,0};
int cnt,area;
int bfs(int x,int y)
{
int t=0;
queue< pair<int,int> > q; q.push({x,y});
st[x][y]=1;
while(q.size())
{
x=q.front().first,y=q.front().second;
q.pop();
t++;
for(int i=0;i<4;i++)
{
int tempx=x+dx[i];
int tempy=y+dy[i];
if(tempx<0||tempx>=n||tempy<0||tempy>=m) continue;
if(st[tempx][tempy]) continue;
if(a[x][y]>>i&1) continue;
q.push({tempx,tempy});
st[tempx][tempy]=1;
}
}
return t;
}
int main(void)
{
cin>>n>>m;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
cin>>a[i][j];
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
if(!st[i][j])
{
cnt++;
area=max(area,bfs(i,j));
}
cout<<cnt<<endl;
cout<<area<<endl;
return 0;
}