PnP-3D: A Plug-and-Play for 3D Point Clouds【即插即用】

PnP-3D提出了一种深度学习驱动的方法,通过引入局部上下文和全局双线性响应改进点云特征,显著提升现有网络在分类、语义分割和目标检测任务上的性能。它在多个基准上达到最先进的结果,并展示了其优势和可扩展性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PnP-3D: A Plug-and-Play for 3D Point Clouds(PnP-3D:即插即用的3D点云)
2021 IEEE Transactions on Pattern Analysis and Machine Intelligence
论文地址: https://arxiv.org/pdf/2108.07378.pdf
代码地址:https://github.com/ShiQiu0419/pnp-3d

摘要

在深度学习范式的帮助下,人们发明了许多用于视觉分析的点云网络。然而,由于点云数据的给定信息尚未得到充分利用,这些网络的发展潜力很大。为了提高现有网络在分析点云数据方面的有效性,我们提出了一个即插即用模块PnP-3D,旨在通过从显式三维空间和隐式特征空间中引入更多的局部上下文和全局双线性响应来改进基本点云特征表示。为了彻底评估我们的方法,我们在三个标准点云分析任务上进行了实验,包括分类、语义分割和目标检测,我们从每个任务中选择了三个最先进的网络进行评估。作为即插即用模块,PnP-3D可以显著提高现有网络的性能。除了在四个广泛使用的点云基准上取得最先进的结果外,我们还提出了全面的消融研究和可视化来展示我们的方法的优势。

提出了一种有效的即插即用模块,在两个方面超越了常规关注方法的功能:

  • (1)纳入更多的局部信息以丰富点上下文。
  • (ii)利用点和通道的全局感知来调节特征表征。

框架

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值