sympy中表示点的速度和位置

点的速度

【mechanics】定义了【Point】类,封装了位置、速度、加速度等运动学物理量,但这设置这些物理量时,需要指定相应的坐标框架,示例如下

from sympy.physics.mechanics import Point, ReferenceFrame
from sympy import Symbol, print_latex

p = Point('p')
v = Symbol('v')
N = ReferenceFrame('N')

p.set_vel(N, v * N.y)      # 设置速度
print_latex(p.vel(N))      # 返回速度

N表示一个坐标框架,【N.y】为其 y y y轴。【vel】可返回粒子在特定坐标系下的的速度,示例中返回的值为 v n ^ y v\mathbf{\hat{n}_y} vn^y,表示沿着 y y y轴的 v v v

点的位置

N之时规定了三个坐标轴的方向,但并没有设置原点。为了表示p1的位置,需要创建另一个点作为参考。

O = Point("O")
p.set_pos(O, 10 * N.x)
print_latex(p.pos_from(O))

在设置 p p p点位置时,参考了坐标原点 O O O,在显示 p p p点位置时,同样以 O O O为基准,其值为 10 n ^ x 10\mathbf{\hat{n}_x} 10n^x

【locatenew】方法可以根据现有点来创建新点,示例如下

q = p.locatenew("q", 10 * N.y)
print_latex(q.pos_from(O))

代码中,以 p p p点为基准创建 q q q点, q q q点相对于 O O O的位置为 10 n ^ x + 10 n ^ y 10\mathbf{\hat{n}_x} + 10\mathbf{\hat{n}_y} 10n^x+10n^y

速度变换

在处理多个物体的相对运动时,往往涉及到坐标系的变换。设坐标系中 B B B的坐标原点为 O O O P P P B B B中一点,且坐标系 B B B N N N以角速度 ω \omega ω旋转,其旋转半径为 r r r,则 P P P N N N中的速度为

v ⃗ N P = v ⃗ B P + v ⃗ N O + ω ⃗ × r ⃗   \vec v^P_N = \vec v^P_B + \vec v^O_N + \vec\omega\times\vec r \\\ v NP=v BP+v NO+ω ×r  

其中, v ⃗ B P \vec v^P_B v BP为点 P P P B B B中的速度; v ⃗ N O \vec v^O_N v NO为坐标系 B B B相对于 N N N的速度。当 P P P B B B中固定时,该式变为

v ⃗ N P = v ⃗ N O + ω ⃗ × r ⃗   \vec v^P_N = \vec v^O_N + \vec\omega\times\vec r \\\ v NP=v NO+ω ×r  

sympy中封装了这两种速度变换方法,分别为【v1pt_theory】和【v2pt_theory】。

from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
from sympy import print_latex

q, q2 = dynamicsymbols('q q2')
qd, q2d = dynamicsymbols('q q2', 1)
N = ReferenceFrame('N')
B = ReferenceFrame('B')
B.set_ang_vel(N, 5 * B.y)   # 设置角速度
O = Point('O')
P = O.locatenew('P', q * B.x + q2 * B.y)
P.set_vel(B, qd * B.x + q2d * B.y)
O.set_vel(N, 0)
vTest = P.v1pt_theory(O, N, B)
print_latex(vTest)

B = N.orientnew('B', 'Axis', [q, N.z])
P = O.locatenew('P', 10 * B.x)
O.set_vel(N, 5 * N.x)
vTest = P.v2pt_theory(O, N, B)
print_latex(vTest)

d d t q ( t ) b ^ x + d d t q 2 ( t ) b ^ y − 5 q ( t ) b ^ z 5 n ^ x + 10 d d t q ( t ) b ^ y \frac{d}{d t} q{\left(t \right)}\mathbf{\hat{b}_x} + \frac{d}{d t} q_{2}{\left(t \right)}\mathbf{\hat{b}_y} - 5 q{\left(t \right)}\mathbf{\hat{b}_z}\\ 5\mathbf{\hat{n}_x} + 10 \frac{d}{d t} q{\left(t \right)}\mathbf{\hat{b}_y} dtdq(t)b^x+dtdq2(t)b^y5q(t)b^z5n^x+10dtdq(t)b^y

### 加速度位置函数的关系 在物理学中,加速度可以通过对位置函数 \( s(t) \) 进行两次时间求导来计算。具体来说: - **一次求导**:位置函数的一阶导数表示物体的速度 \( v(t) = \frac{ds}{dt} \)[^1]。 - **二次求导**:进一步对速度函数进行求导可以得到加速度 \( a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2} \)[^1]。 因此,加速度实际上是位置函数关于时间的二阶导数。 #### 数学公式 假设位置函数为 \( s(t) \),则有如下关系: \[ v(t) = \frac{ds}{dt} \] \[ a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2} \] 如果已知一个特定的位置函数形式,可以直接代入上述公式完成计算。例如,对于简谐振动中的位移函数 \( s(t) = A\cos(\omega t + \phi) \)[^2],其对应的加速度表达式可通过两步求导得出: \[ v(t) = -A\omega\sin(\omega t + \phi) \] \[ a(t) = -A\omega^2\cos(\omega t + \phi) \] 可以看到,最终的结果表明加速度是一个正弦或余弦函数,并且具有相同的频率但相位不同。 #### 物理意义 从物理意义上讲,加速度描述的是单位时间内速度变化的程度。当通过对位置函数连续两次求导获取到加速度之后,这不仅反映了瞬时速率的变化趋势,还揭示了作用力的方向以及大小的信息(依据牛顿第二定律 \( F=ma \))。特别地,在周期性运动如弹簧振子或者单摆的情况下,这种分析方法尤为重要因为它能够清晰展示系统的动态特性及其稳定性条件。 ```python import numpy as np from sympy import symbols, diff, cos t = symbols('t') A, omega, phi = 5, 2*np.pi, 0 # Example parameters for SHM # Position function s_t = A * cos(omega*t + phi) # First derivative (velocity) v_t = diff(s_t, t) # Second derivative (acceleration) a_t = diff(v_t, t) print(f"Position Function: {s_t}") print(f"Velocity Function: {v_t}") print(f"Acceleration Function: {a_t}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值