RendNet Unified 2D3D Recognizer with Latent Space Rendering【浅读】

RendNet提出了一种创新的框架,结合矢量图形(VG)和光栅图形(RG)进行2D和3D对象识别,利用潜在空间渲染解决拓扑错误问题,实现在多种任务上的先进性能。
摘要由CSDN通过智能技术生成

RendNet: Unified 2D/3D Recognizer with Latent Space Rendering

RendNet: Unified 2D/3D Recognizer with Latent Space Rendering(使用潜在空间渲染的统一2D/3D识别器)

2022CVPR

摘要

矢量图形(VG)在我们的日常生活中无处不在,在工程、建筑、设计等领域有着广泛的应用。大多数现有方法的VG识别过程是先将VG渲染成栅格图形(RG),然后根据RG格式进行识别。但是,这种方法丢弃了几何图形的结构,失去了VG的高分辨率。最近,另一类算法被提出直接从原始VG格式进行识别。但它受到拓扑错误的影响,而拓扑错误可以通过RG渲染过滤掉。与其只看一种格式,不如同时使用VG和RG格式来避免这些缺点,这是一个很好的解决方案。

此外,我们认为VG-to-RG渲染过程是有效结合VG和RG信息的关键。通过指定如何将VG原语转换为RG像素的规则,渲染过程描述了VG和RG之间的交互和相关性。因此,我们提出了一种用于2D和3D场景识别的统一架构RendNet,它考虑了VG/RG表示,并通过结合VG -RG栅格化过程来利用它们的相互作用。实验表明,在不同的VG数据集上,RendNet可以在2D和3D目标识别任务上达到最先进的性能。

主要贡献:

  • RendNet是一个2D/3D统一的矢量图形识别框架,它利用了矢量图形和光栅图形的优点。
  • RendNet融合了渲染过程,有效地利用了RG和VG之间的交互。
  • 在二维和三维数据集上分别对分类任务和目标检测任务进行了实验。实现了最先进的表现。

框架

在这里插入图片描述

结论

在本文中,我们提出了利用矢量图形和光栅图形来识别二维和三维物体的RendNet。我们还设计了一种新的隐空间绘制方法。各种2D和3D目标识别实验表明,与基线相比,RendNet具有更高的性能和效率。将来,我们可以集成更多的技术来进一步提高性能,比如在大型VG数据集上进行预训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值