递归与迭代
#include <stdio.h>
int count = 0;
//int Fib(int n)//递归的算法有重复计算(2的n次方)。效率差。
//{
// //if (n == 3)//测试第三个斐波那契数的计算次数
// //{
// // count++;
// //}
// if (n <= 2)
// return 1;
// else
// {
//
// return Fib(n - 1) + Fib(n - 2);
// }
//}
int Fib(int n)
{
int i = 0;
int a = 1;
int b = 1;
int c = 1;
while (n>2)//循环解法
{
c = a + b;
a = b;
b = c;
n--;
}
return c;
/*if (n <= 2)
return 1;
else
{
for (i = 3; i <= n; i++)
{
c = a + b;
a = b;
b = c;
}
return c;
}*/
}
int main()//求第n个斐波那契数。
{
int n = 0;
int ret = 1;
scanf("%d", &n);
//TDD-测试驱动开发
ret = Fib(n);
printf("ret=%d\n", ret);
//printf("count=%d", count);
return 0;
}
//int Fac(int x)//函数循环求阶乘
//{
// int i = 0;
// int ret = 1;
// for (i = 1; i <= x; i++)
// {
// ret *= i;
// }
// return ret;
//}
int Fac(int x)//递归求阶乘
{
if (x > 1)
return x * Fac(x - 1);
else
return 1;
}
//int Fac(int x)//函数循环求阶乘
//{
// int i = 0;
// int ret = 1;
// for (i = 1; i <= x; i++)
// {
// ret *= i;
// }
// return ret;
//}
int Fac(int x)//递归求阶乘
{
if (x > 1)
return x * Fac(x - 1);
else
return 1;
}
int main()
{
int n = 0;
int ret = 0;
scanf("%d", &n);
ret=Fac(n);
printf("%d\n", ret);
return 0;
}