# 引言
在当今信息爆炸的时代,如何高效地从海量数据中提取有价值的信息至关重要。Kinetica作为一个强大的数据库,集成了向量相似性搜索支持,为精准的信息检索提供了理想的解决方案。本篇文章将详细介绍如何利用Kinetica Vectorstore构建一个高效的Retriever,利用OpenAI Embeddings实现智能化的信息检索。
# 主要内容
## Kinetica数据库介绍
Kinetica是一种支持向量相似性搜索的数据库,提供了精确和近似最近邻搜索,支持L2距离、内积和余弦距离等多种计算方式。这使得Kinetica在需要快速向量查询的场景下表现尤为出色。
## 环境准备
在开始之前,确保安装了相关的连接器:
```bash
%pip install gpudb==7.2.0.9
获取OpenAI API Key
我们将使用OpenAI Embeddings,因此需要获取OpenAI API Key。可以使用以下代码设置环境变量:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
加载环境变量
使用dotenv
库加载环境变量:
from dotenv import load_dotenv
load_dotenv()
关键模块介绍
我们将使用以下模块:
TextLoader
:加载文本数据Kinetica
和KineticaSettings
:管理Kinetica连接OpenAIEmbeddings
ÿ