**自动化文档元数据标注:使用OpenAI Functions提升你的工作效率**

引言

在处理大规模文档时,自动标注文档的元数据(如标题、语调、长度等)显得尤为重要。拥有这些结构化的元数据,可以在后续的相似性查询中提供更精准的结果。然而,手动标注大量文档的元数据是十分繁琐的。本文将介绍如何使用OpenAI Metadata Tagger自动化地为文档提取和标注元数据,从而大大提高你的工作效率。

主要内容

Metadata Tagger 简介

OpenAI Metadata Tagger 是一个用于自动提取文档元数据的文档转换器。它通过一个可配置的OpenAI Functions驱动链工作,因此如果你打算自定义LLM实例,它必须是支持函数的OpenAI模型。这种方法特别适合完整的文档,因此建议在其他拆分或处理前首先使用它。

设置和使用

你可以通过初始化一个有效的JSON Schema对象来设定文档的元数据结构。例如,对于一组电影评论的索引,你可以这样初始化:

from langchain_community.document_transformers.openai_functions import (
    create_metadata_tagger,
)
from langchain_core.documents import Document
from langchain_openai import ChatOpenAI

schema = {
    "properties": {
        "movie_title": {"type": "string"},
        "critic": {"type": "string"},
        "tone": {"type": "string", "enum": ["positive", "negative"]},
        "rating": {"type": "integer", "description": "The number of stars the critic rated the movie"},
    },
    "required": ["movie_title", "critic", "tone"],
}

llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")  # 使用API代理服务提高访问稳定性

document_transformer = create_metadata_tagger(metadata_schema=schema, llm=llm)

然后,只需将文档列表传递给文档转换器,它将从内容中提取元数据。

元数据提取示例

以下是一个简单的示例代码展示如何提取电影评论的元数据:

original_documents = [
    Document(
        page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."
    ),
    Document(
        page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.",
        metadata={"reliable": False},
    ),
]

enhanced_documents = document_transformer.transform_documents(original_documents)

import json

print(
    *[d.page_content + "\n\n" + json.dumps(d.metadata) for d in enhanced_documents],
    sep="\n\n---------------\n\n",
)

自定义和扩展

你还可以使用Pydantic来初始化文档转换器,并通过自定义提示来调整标签链。例如,如果你想让LLM在输入文档中关注具体细节或以某种风格提取元数据,可以传递自定义提示。

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template(
    """Extract relevant information from the following text. 
    Anonymous critics are actually Roger Ebert.

    {input}
    """
)

document_transformer = create_metadata_tagger(schema, llm, prompt=prompt)
enhanced_documents = document_transformer.transform_documents(original_documents)

常见问题和解决方案

  1. 文档不完整导致的元数据提取错误:确保文档在处理前是完整的。
  2. 自定义模型提示无效:确保提示文本中包含了恰当的上下文和指导。
  3. 访问API不稳定:考虑在某些地区使用API代理服务来提高访问的稳定性。

总结与进一步学习资源

OpenAI Metadata Tagger为处理大量文档提供了一种高效的自动化解决方案。通过自定义元数据模式和提示文本,你可以根据特定需求对文档进行标注,从而为后续的分析或搜索提供支持。

进一步学习资源

参考资料

  1. LangChain Community Documentation
  2. OpenAI API Documentation

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值